
AI Planning in Portal-based Workflow Management
Systems

Michelle Cheatham, Collaborative Technologies, AFRL, Wright-Patterson AFB, OH, michelle.cheatham@wpafb.af.mil
Michael T. Cox, Computer Science Department, Wright State University, Dayton, OH, mcox@cs.wright.edu

Abstract — Workflow management systems (WfMS) allow
multiple agents to work towards achieving a common goal
by facilitating communication between them. This paper
discusses the distinctive characteristics of portal-based
WfMS and considers the utility of using techniques
employed in other WfMS environments in this domain.
Specifically, the idea of constructing workflows by applying
artificial intelligence planning techniques to a user-
specified goal is explored.

1. INTRODUCTION

The term workflow has been surfacing in many different
contexts recently. In the nineties, workflow referred to a
business process, and much effort was devoted to business
process re-engineering to improve organizational efficiency.
This type of workflow consists primarily of human
components and is relatively static over time [3] [11]. An
example is the series of steps a customer service department
goes through when an item is returned. More recently,
workflow has been used to describe a sequence of services
executed on a computing grid. These workflows primarily
involve software components and are often applied to
problems involving scientific simulations [7]. They are
dynamically assembled from available components to fit the
problem at hand.

For the purposes of this discussion, we will consider a
workflow management system (WfMS) to be a method of
enabling communication between multiple agents (also
called operators, services, or nodes) in order to achieve a
specified goal. These agents may be humans, hardware, or
software. The type of workflow management system that
will be the focus of this paper is that found within web-
based portal frameworks. Though there are a range of
different WfMS that fall into this category, they all lie
somewhere along a spectrum between traditional and grid-
based workflows. This paper will discuss the characteristics
of portal-based WfMS and examine the utility of applying
concepts currently being considered for use in other types of
WfMS to portal-based systems. Specifically, the idea of
using user-specified goals and artificial intelligence (AI)
planning techniques as a way to construct workflows is
tested through a prototype portlet.

The remainder of the paper is organized as follows: Section
2 presents an argument on the merits of using AI planning
techniques to aid in the creation of workflows; Section 3
discusses the characteristics of portal-based WfMS and their
implications on AI planning strategies; a preliminary
implementation of a planning-based workflow generator in a
commercial portal environment is shown in Section 4;
conclusions and future work are covered in Section 5.

2. BENEFITS OF AI PLANNING IN WFMS

Portals revolve around users. However, despite the
advertising claims of many companies, current workflow
systems within portals require a software developer to
construct the workflows. These WfMS require a user to
specify how a goal is accomplished instead of simply what
needs to be achieved. In order for a workflow to be created,
a user must have a detailed knowledge of every operator
within the system, including its pre-conditions, inputs,
outputs, and post-conditions. The user must also be
proficient in the use of the middleware required to chain the
operators together. AI planning techniques can be used to
remove this burden from the user by partially automating
the workflow generation process [1]. This entails
significant up-front development costs because all operators
within the system, both human and software, have to be
described in terms of a planning language. However, this
initial development time is more than offset by the potential
ability of users to dynamically create their own workflows
without the need to wait for a developer to become
available.

While enabling users to create workflows on their own is
the primary benefit of automating workflow creation, there
are other advantages as well. For instance, it is easy to
generate a new workflow if an operator becomes
unavailable, resulting in a more fault tolerant system. The
planner simply needs to be run again with the same goal,
and new operators will be chosen to replace the inoperative
one. This is in contrast to current systems, where
workflows are created and saved for later use instead of
being generated on-demand. In that case, each workflow
that uses an operator that has become unavailable must be
hand-edited to use a substitute. Similarly, if new operators
are introduced into the system, a planner can immediately
begin using them in workflows, while a standard WfMS
would again require review of all existing workflows and

manual editing of those that could benefit from the newly
available operator.

Another advantage of using AI planning in the workflow
creation process is that the knowledge captured by
describing all of the agents in the system in terms of their
pre- and post-condition states can be used in aspects of the
portal beyond the workflow management system. In
particular, representing the human elements of the system
using a planning language opens the possibility of adjusting
the user’s view of the portal based on her current goals. For
instance, if the current user is the actor in the operator
ApprovePlan, and that operator is the current node in the
workflow, then the user’s main portal screen could be made
to show the plan being approved, along with other pertinent
information.

3. OPPORTUNITIES AND CHALLENGES IN

PORTAL -BASED WFMS

The unique nature of portal-based workflow management
systems makes it worthwhile to examine how some of the
problems uncovered by other research regarding AI
planning in WfMS apply within a portal framework. While
some characteristics of portal-based WfMS make AI
planning integration easier, some issues uncovered through
research with other types of WfMS are problems in a portal
framework as well.

One of the primary concerns when using standard AI
planners to solve real-world problems is that the size of the
search space may overwhelm the planner, resulting in an
inability to generate plans in an acceptable amount of time.
Current research suggests a variety of possibilities to deal
with this issue: codifying business rules to guide the search
process [15], using templates or a plan library as a starting
point [3], or taking a mixed-initiative approach [8]. While
using these ideas in a portal-based WfMS is possible, the
nature of some portal systems limits the severity of this
problem. Many portals are based on enterprises or
communities of interest, which are organized around a
single topic [9] [13]. Workflows created in these
environments will consist of operators specific to this topic
or from a limited set of generic operators. This implies that
the search space is generally small for this type of portal
framework.

Another issue when using AI planning in workflow
management systems is the language needed to describe the
workflow operators. There are competing requirements in
this area: end users naturally think in the vocabulary of the
problem domain, and it is best if the language allows them
to specify their goals in these terms; however, the
performance of workflows generated by AI planners is
limited by how much information the language provides
about the relationships, capabilities, and trade-offs of
available operators [7]. Some research in this area is based
on building two separate ontologies to describe problems:

one for the domain-specific concepts and another for the
planning concepts [3]. However, this level of
expressiveness may not be needed in portal-based WfMS.
As mentioned earlier, the number of different operators is
often relatively small, and these operators usually exist
within the same limited domain. Therefore, the language
used to describe the operators’ pre-conditions and effects
need not be as complex as that used with other types of
WfMS. Another relevant feature of portal-based workflow
management systems is that they have not been designed
with inter-operability in mind [15]. Even if this were not
the case, it will be some time before most organizations will
consider adopting workflow operators not under their
control. While this reluctance obviously limits the available
workflow operators and therefore the types of problems that
can be solved by the organization’s employees (or
members) by creating workflows, it also reduces the
demands placed upon the planning language. For example,
the planning language does not need to be expressive
enough to describe operator characteristics related to quality
of service and trust concerns, because these issues are not
critical if all of the operators are under the organization’s
control and can be dealt with internally by the organization
if a problem develops.

Finally, unlike most grid computing environments, portal-
based WfMS typically do not use a peer-to-peer
architecture. Instead, the portal server acts as a focal point
for facilitating communication among software applications
participating in various workflows. The implication of this
is that it is not necessary to provide dynamic discovery
mechanisms for workflow nodes within a portal-based
WfMS.

A common problem in all types of WfMS, portal-based or
otherwise, is that oftentimes a workflow cannot be
completely specified at design time because later actions
may have complex dependencies on information gathered
during the execution of earlier actions. There are several
different strategies for handling this complexity. If the
dependencies between early and later nodes are understood
at design time and the only information that is missing is the
actual outcome of the earlier nodes, then a contingency
planner can be used. This type of planner can generate
plans containing operators that may not actually be used
during execution, due to some operators having uncertain
effects [11]. Another tactic is to interleave the planning and
execution stages. In this case, workflows may initially
contain some nodes that are high-level placeholders that are
refined as execution progresses [7]. This method places
more demands on both the planner and the workflow
management system. The planner has more operators to
consider because there may be multiple synonymous
operators at varying levels of abstraction, and the WfMS
must pace the workflow execution to allow the planner time
to fully specify nodes before the workflow reaches them. A
third alternative, proposed in [15], is to use business rules as
a basis for “transformational rules,” which would specify
how a workflow should be adapted in light of new

information gained during execution. This method would
be challenging for many organizations to implement
because business rules often exist as tacit knowledge within
the company and are not easily codified.

Access control is another issue that must be handled in all
types of WfMS, including those that are portal-based. In
grid-based workflow management systems, access control is
very complex due to the nature of the grid – it is likely that
services will be made available by a multitude of different
organizations. Access privileges may depend not only on
the group or role a given user has, but also on resource
usage policies between organizations. These policies may
change suddenly – possibly even in the middle of workflow
execution – and the WfMS must be able to compensate [7].
Fortunately, the situation in a portal-based WfMS is
simplified somewhat by the likelihood of all operators being
provided by a single organization. Access privileges will
still need to be controlled through user and group attributes,
however. These attributes could also be used by the
workflow system to prioritize requests.

The greatest challenge regarding incorporating AI planning
techniques into existing portal workflow management
systems is that most existing software was written using an
object oriented paradigm, while workflow operators need to
follow a service oriented approach. Object oriented
programming has been extremely popular for more than a
decade. One of the main ideas of this methodology is
creating programs out of loosely coupled components, or
objects. Operators within a workflow need to be closer to
services than objects, however. Both are loosely coupled,
but services encompass complete business functions that are
meant to be reused in configurations not thought of when
the services were originally developed [12]. Creating the

proper services when starting from monolithic legacy
systems, even when these systems are object oriented, is not
always an easy or straightforward task. Moving to a service
oriented architecture (SOA) requires identifying which
business functions should be exposed as services,
determining the proper interfaces for these services, and
finding the underlying code necessary to implement them.
Because services represent complete business functions, the
code to implement them may need to be integrated from
pieces in several different applications [12].

4. PRELIMINARY IMPLEMENTATION

In order to gather first-hand experience using AI planning
techniques in a web-based portal environment, we have used
PRODIGY [2] [14], a state space planner, to implement a
workflow generation portlet within the
KnowledgeKinetics™ framework. This portlet is a proof of
concept; a more robust implementation will be part of our
future work in this area.

KnowledgeKinetics™ [9] is a collaboration framework
developed and commercialized by Ball Aerospace and the
Air Force Research Laboratory Collaborative Technology
and Applications Branch. The collaboration framework is
meant to allow geographically distributed teams to
collaborate on projects and decision support ranging from
product design to research. The workflow system within
KnowledgeKinetics™ supports both human and software
operators. KnowledgeKinetics™ is based on the J2EE
platform; software operators may be written in any
programming language, but Java wrappers must be created
for them to function within the WfMS. The human
operators are integrated into the portal framework and can

Figure 1 – Combat Decision Support System portal

monitor the user’s interactions with entities inside the
portal. For example, human operators include actions such
as a user filling out a form, approving/choosing an option,
uploading a document. When a developer creates a
workflow, she first checks to see that all necessary operators
are available. If not, additional applications are integrated
into the system. Once all of the required operators are
available, they are dragged into place using the workflow
integrated development environment (IDE), along with
process control nodes such as conditional branches, loops,
and parallel series. Nodes in the workflow are connected by
joining the outputs of some to the inputs of others.

KnowledgeKinetics™ exemplifies many of the
characteristics of portal-based workflow management
systems discussed previously. The system supports both
human and software operators. Workflows in the system
are a blend between static and dynamic: some workflows
represent standard business processes that seldom change,
such as travel expense approval; others are more dynamic in
nature, such as those created to chain together simulation
tools to do what-if analyses. Software developers are
required to create all but the simplest workflows due to the
knowledge required about each of the available operators
and the need to write scripts that act as “glue” by passing
information between some workflow nodes. In addition, the
KnowledgeKinetics™ server acts as a broker between all of
the agents in the system. Finally, all existing
KnowledgeKinetics™ workflows use agents belonging to
an individual organization.

There are many different AI planners available, see [11].
PRODIGY, a domain-independent state space planning tool,
was chosen for this implementation. PRODIGY has a
partial order planning mode – in addition to finding a
sequence of operators to achieve a given goal, it is also
capable of recognizing when some operators can be
executed in parallel.

The prototype workflow generation tool we have
implemented has been applied to a prototype Combat
Decision Support System (CDSS). This portal was
developed several years ago as a proof of concept
demonstration of the kind of assistance that a sophisticated
web-based portal could provide to the military with respect
to command and control operations. The CDSS portal
serves as a focal point for a commander monitoring a battle.
There are portlets available to plan a battle, simulate the
plan, issue orders, monitor assets, and watch the battle
unfold. Workflow nodes to support these activities, as well
as standard KnowledgeKinetics™ operators, such as
sending a notification message to a user, getting a user to
approve a proposal, and tasking a user to fill out an online
form, also exist within CDSS. Choosing the CDSS portal as
our implementation target allowed us to examine the issues
arising from attempting to retrofit an existing system to take
advantage of AI planning techniques.

In order to use AI planning to create workflows within the
KnowledgeKinetics™ framework, additional information is

required in the workflow node representation. Workflow
nodes currently consist of the following information: type,
name, inputs, outputs, and action (either a script or a method
name). In addition to these fields, the pre- and post-
conditions of each node must also be stored. An example of
the new node representation is shown in Figure 2. The
operator in the example is a software tool that analyzes a set
of alternative courses of action. This operator takes as input
a set of potential plans and returns a risk analysis of each
one. The Resource Name and Resource Key fields indicate
which software agent provides this action. The preconds
and effects sections indicate to the planner that this operator
can be applied only after a set of plans have been created
and will result in each plan within the set being evaluated.
For a more thorough discussion of the PRODIGY section of
the operator definition, see [2].

In our system, the same file contains the information
required by both the planner and the workflow engine for all
operators within an enterprise. This alleviates some
consistency issues and simplifies the creation and use of a
domain language that describes all of the available
operators. We are currently developing a portlet to assist
software developers in creating new operators and adding
the required information to this file. In many current
systems, including KnowledgeKinetics™, new operators are
added in the same IDE used to create workflows. This can
potentially cause problems because it creates a temptation
for developers to create “glue” nodes that are tightly
coupled to other nodes in the workflow or that are useful
only in the workflow they are currently creating. A separate
interface to create new nodes independent of any specific
workflow will help to emphasize the ideal of developing
independent services that are generic enough to be used in
many different circumstances.

(OPERATOR COA
; Type | Resource Activity
; Name | COA
; Attributes
; Resource Name | COA Assessment
; Resource Key |
AgentProxyHome.MyCommunity.1089638838578
; Inputs
; plans | java.util.Vector
; Outputs
; risk | java.util.Hashtable
 (params <planset>)
 (preconds
 ((<planset> SETOFPLANS))
 (forall ((<plan> (and PLAN
 (gen-from-pred (memberOf <plan>
 <planset>)))))
 (created <plan>))
)
 (effects
 ()
 ((add (evaluated <planset>))
)

Figure 2 – Operator representation

In order to create a new workflow, an end user first logs into
the Combat Decision Support System portal. We have
created a new portlet that is viewable on the main screen of
the enterprise (Figure 1). The user enters the goal of the
workflow into the text box at the top of the portlet. An
integrated help system provides a dynamic list of all
possible goals within the enterprise, based on the currently
available workflow operators. Complex goals can be made
by joining individual goals with boolean operators. Once
the goal has been entered, the user clicks on the Generate
Plan button, which causes the portlet to communicate with
the PRODIGY server via Prodigy/Agent [5] [6].
Prodigy/Agent is a Java-lisp interface that allows Java-based
clients to communicate via KQML [10] messages with the
PRODIGY server in order to establish goals and generate
plans. An example goal and the resulting plan can be seen
in Figure 1. Once a suitable plan has been generated, the
user creates the workflow by clicking on the Generate
Workflow button in the lower right corner of the portlet.
The user is then taken to a screen containing the ready-to-
execute workflow, which is shown in Figure 3.

Overall, using an AI planning tool to facilitate workflow
creation within the KnowledgeKinetics™ framework was a
relatively straightforward task. The manner in which the
workflow nodes were described had to be changed in order
to incorporate the pre- and post-conditions of the operator,
but this information (which is used by both the workflow
generator and the PRODIGY planner) is stored in a single
file and is therefore not difficult to maintain. As discussed
previously, the language used to describe the operators was
relatively simple. Despite the overall complexity of the
Combat Decision Support System domain, the number of
operators was not large enough to make generating the plan
a time-intensive task. By far the most time consuming part
of the process was rewriting some of the operators within
the system in order to decouple them enough to exist as

independent services, without the need for scripts to glue
them together.

5. CONCLUSIONS AND FUTURE WORK

This paper illustrates how the unique characteristics of
portal-based workflow management systems – a
combination of human and software agents, the limited
scope of domains, a centralized architecture, and agents
located within the boundaries of the organization –
influence the use of AI planning techniques to facilitate
workflow generation as a means of enabling multiple agents
to work together to achieve the user’s goal.

Much of the research into applying AI planning to this type
of problem stems from the area of grid-based services.
While some of the problems encountered on grids are not
relevant in a portal environment, many remain important
issues. Future work shall include examining the potential of
less centralized architectures for portal-based workflow
management systems that would allow for more complex
communication between various agents. Using ontologies
and other semantic web standards to allow a more diverse
collection of agents to work with each other and with a large
set of data resources could also be explored. The utility of
creating agents within workflow management systems that
are more goal-centric could be considered, along with the
possibility of integrating them by analyzing goal and
subgoal relationships rather than by using domain specific
knowledge and constraints.

As Curbera points out in [4], it may be some time before
grid-based service oriented computing comes into its own.
In the meantime, our research has shown that some of the
same ideas can be used to improve portal-based workflow
management systems today.

Figure 3 – Ready-to-execute workflow

REFERENCES

[1] Allen, J. F., Hendler, J. & Tate, A. (Eds.). Readings in
planning, San Francisco: Morgan Kaufmann, 1990.

[2] Carbonell, J. G. et al. “Prodigy4.0: The Manual and
Tutorial,” technical report CMU-CS-92-150. Computer
Science Department., Carnegie Mellon University, 1992.

[3] Chung, P.W.H. et al, “Knowledge-based process
management – an approach to handling the adaptive
workflow,” Knowledge-Based Systems, 16, 149-160, 2003.

[4] Curbera, Francisco et al, “The Next Step in Web
Services,” Communications of the ACM, Vol. 46, No. 10,
October 2003.

[5] Cox, M. T., Edwin, G., Balasubramanian, K., & Elahi,
M. “Multiagent goal transformation and mixed-initiative
planning using Prodigy/Agent,” in Proceedings of the 4th
International Multiconference on Systemics, Cybernetics
and Informatics, Vol. 7 p. 1-6, 2001.

[6] Elahi, M. M. “A distributed planning approach using
multiagent goal transformations,” masters dissertation,
Wright State University, Computer Science and Engineering
Department, Dayton, OH, 2003.

[7] Gil, Yolanda et al, “Artificial Intelligence and Grids:
Workflow Planning and Beyond,” IEEE Intelligent Systems,
26-33, 2004.

[8] Kim, Jihie et al, “An Intelligent Assistant for Interactive
Workflow Composition,” ACM IUI ’04, January 13-16,
2004.

[9] KnowledgeKinetics™ homepage,
https://k2.knowledgekinetics.info

[10] Knowledge Query and Manipulation Language
(KQML) specification,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html

[11] Moreno, M.D.R. and Kearney, P. “Integrating AI
planning techniques with workflow management system,”
Knowledge-Based Systems, 15, 285-291, 2002.

[12] Papazoglou, Mike P, “Service-Oriented Computing:
Concepts, Characteristics, and Directions,” Proceedings of
the Fourth International Conference on Web Information
Systems Engineering, IEEE, 2003.

[13] Smith, Reid G. and Farquhar, Adam, “The Road Ahead
for Knowledge Management: An AI Perspective,” AI
Magazine, 17-40, Winter 2000.

[14] Veloso, M. M., et al. “Integrating planning and
learning: The PRODIGY architecture,” Journal of
Theoretical and Experimental Artificial Intelligence. 7(1):
81-120, 1995.

[15] Yang, Jian et al, “A Rule Based Approach to the
Service Composition Life-Cycle,” Proceedings of the
Fourth International Conference on Web Information
Systems Engineering, IEEE, 2003.

[16] Yang, Jian, “Web Service Componentization,”
Communications of the ACM, Vol. 46, No. 10, 35-40,
October 2003.

