
Function Insight
Highlighting Suspicious Sections in Binary Run Traces

Michelle Cheatham, Jason Raber
Cyber Research Lab
Riverside Research

Beavercreek, OH, USA
mcheatham, jraber@riversideresearch.org

Abstract— Function Insight is a tool for visualizing run traces at
the functional level. A key feature is the ability to bring the
user’s attention to particularly important sections of code based
on rule-, machine learning- and data mining-based heuristics or a
user-defined “interest metric.”

Run trace analysis; profiling; visualization; differential
analysis; software reverse engineering framework

I. MOTIVATION
Traditionally, much of software reverse engineering

involves sitting down with an executable for which no source
code is available, identifying the original entry point, and
slogging line-by-line through assembly code. In our
experience analyzing malware and red teaming (assessing the
strength of) application protections, insight often comes more
quickly and easily by raising the level of abstraction. For
instance, rather than examining straight assembly code,
looking at the control flow and timing information of a
protected or infected versus a clean executable at the
functional level can give valuable information about the nature
of the protection or malware. This becomes even more helpful
if the tool can quickly direct the user’s attention to particularly
suspicious sections of code. It was these motivations that led
us to develop Function Insight – we want to provide an easy-
to-use tool that leverages rule-based, machine learning, and
data mining techniques to aid non-experts in analyzing
anomalous sections of executables.

II. CAPABILITIES
Function Insight shows a run trace at the functional level. It

currently uses data generated by our custom profiling tool Data
Code Miner [1] but could easily show information from other
profiling tools, such as gprof, Detours, or WinAPIOverride.
The information about each function call includes the function
name, return address, parameter types and values, and other
details. There can easily be hundreds of thousands or more
function calls in a single run trace. Function Insight provides
visualizations and commands to allow users to make sense of
this data. Users can do things typical of code profiling tools,
including viewing the call tree at various levels of abstraction
(all the way down to the value of registers at the time of a
function call, if they desire), finding all occurrences of a
particular function, and considering the time spent in various
functions. In addition, Function Insight has a diff mode that

allows users to compare two executions side-by-side,
facilitating the kind of analysis of clean versus modified code
discussed above.

We think the most useful aspect of this tool is the ability to
automatically highlight suspicious sections of code, which
allows an analyst to quickly zero in on his target (see Figure 1).
When a run trace is loaded, the user can select from a list of
available heuristics. How each heuristic operates is completely
unconstrained – it simply needs to produce a value between 0
and 1 in the end to indicate the level of interest of each line in
the run trace. Function Insight then combines all of these
values into a single interest score and shades that line in the run
trace in proportion with that score. By default the values from
the heuristics are simply averaged, but the user can specify
whatever function they would like by writing a small piece of
Java code. Based on our practical red teaming experience, we
have developed a basic set of heuristics that simply flag API
calls for socket communications, file access, and anti-
debugging protections. We are currently beginning
development of several more advanced heuristics based on
machine learning and data mining techniques, one of which is
discussed in Section IV.

Function Insight is part of Hydra, a software reverse
engineering tool suite being developed through an internal
research and development effort at Riverside Research. We
hope that academic researchers will consider using Hydra as a
test bed for their own heuristic algorithms and run trace
visualizations. Researchers can develop their own heuristic
algorithms in Java using our open API. Once the code is

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.63

433

compiled into a DLL and placed in the plugins directory, it is
automatically included in the list of available heuristics that is
presented to the user when they open a run trace. Similarly,
users who want to develop their own visualizations for run
trace information can write them in Java, package them in a jar
file, and place them in the plugins directory. They will then be
automatically available within the application and can make
use of the heuristics and other functionality through our API.

III. RELATED WORK
There are several existing tools similar to Function Insight.

For instance, KProf [2] allows users to visualize the output
from common profilers, such as gprof and Function Check, but
it does not have the ability to identify or highlight interesting
code segments. WinAPIOverride [3] allows users to compare
two traces and view standard profiler statistics; its trace
comparison system is relatively basic, however, and it does not
provide any identification or highlighting features. Process
Stalker [4] has the ability to generate detailed run trace graphs
and automatically highlight “interesting” sections of graphs;
however, it does not provide any differential analysis facilities
for comparing traces and the definition of what qualifies as
interesting is hard-coded. Function Insight seeks to provide an
easy-to-use run trace comparison capability, along with the
ability to apply built-in or user-created heuristics to indentify
and highlight interesting code segments.

IV. FUTURE RESEARCH
One of the research directions we would like to pursue

based on the tool presented here is the development of more
advanced plug-ins for filtering and assigning interest metric
values to sections of code in binary run traces for which no
source code is available. One possibility is to use Sequential
Pattern Mining [5] on a run trace to determine which function
calls normally lead to certain other function calls. Cases in
which these patterns are violated could then be given a higher
interest value to catch the analyst’s attention. This technique
could be applied either within a single run trace or to compare
two different traces. For instance, assume we perform
sequential pattern mining on a run trace of an executable that is
known to be clean. We could then automatically flag areas of

run traces from binaries suspected to be compromised where
the discovered patterns are violated. The higher the support
and confidence levels of the violated rule, the more suspicious
it is when the rule is broken. Another potential research thread
is to improve the way comparisons are done between run
traces. Current approaches are based on simple equality
between trace components (function names/addresses,
parameter values, register values, etc.), but we have found that
these lead to many false positives because of normal variations
between execution runs. We would like to develop alternative
similarity metrics that avoid distracting the user with these
inconsequential fluctuations. Both of these ideas could be
evaluated within our existing Function Insight framework.

V. SUMMARY
Function Insight makes the following contributions to the

field of software reverse engineering:

• Provides a polished, easy-to-use, and easily
understandable tool to visualize run traces, including a
diff mode for comparing two different traces

• Quickly draws the user’s attention by highlighting
important sections of code based on included or user-
defined filters and interest metric value

• Facilitates research and development of more advanced
heuristics and interest metric assignments by serving as
a test bed for such algorithms

REFERENCES

[1] J. Raber and E. Laspe, "Emulated breakpoint debugger and data mining
using Detours," 14th Working Conference on Reverse Engineering
(WCRE), pp.271-272 , 2007.

[2] KProf online documentation, http://kprof.sourceforge.net/.
[3] WinAPIOverride online documentation,

http://jacquelin.potier.free.fr/winapioverride32/documentation.php.
[4] Process Stalker online documentation,

http://pedram.redhive.com/process_stalking_manual/.
[5] B. Goethals, “Survey on frequent pattern mining,” Technical

report, Helsinki Institute for Information Technology, 2003

434

