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ABSTRACT

Cheatham, Michelle. PhD Department of Computer Science and Engineering, Wright State Univer-
sity, 2014. The Properties of Property Alignment on the Semantic Web.

Ontology alignment is an important step in enabling computers to query and reason across the

many linked datasets on the semantic web. This is a difficult challenge because the ontologies

underlying different linked datasets can vary in terms of subject area coverage, level of abstraction,

ontology modeling philosophy, and even language. The alignment approach presented here centers

on string similarity metrics. Nearly all ontology alignment systems use a string similarity metric

in one form or another, but it seems that the choice of a particular metric is often arbitrary. We

begin this dissertation with the most comprehensive survey to date on the performance of string

similarity metrics and string preprocessing strategies for ontology alignment. Based on this work we

present practical guidelines for choosing string metrics in the face of different types of ontologies and

different alignment goals. Additionally, we show that string similarity metrics alone can perform

competitively with state-of-the-art alignment systems on the most popular benchmarks in the field.

One of the contributions of our string similarity metric survey is quantification of the difference

in performance between aligning classes and aligning properties (relations between classes). Put

simply: aligning properties is hard, and existing string similarity metrics are not of great help.

We therefore take on the task of developing a new string-based alignment approach that performs

better on properties. Unfortunately, evaluating that approach is difficult because the only existing

alignment benchmark that includes properties is, in our view, unrealistic since all relations in the

reference alignment are presented as completely certain. Human experts do not have this degree

of confidence when asked to align an ontology. We therefore present a more nuanced version of

this benchmark that we have created through a combination of expert survey and crowdsourcing.

We then present our new string-based property alignment system and evaluate its performance on

both the current benchmark and our proposed revision. Our property-centric string metric can be

configured for either high precision or high recall. The results show a five-fold increase in precision

and a doubling of recall over an approach based on the best current string metric. Finally, we apply

our system to a real-world test case and analyze the results.
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1

Introduction

Tim Berners-Lee originally envisioned a much different world wide web than the one we have today

– a Semantic Web that computers as well as humans could search for the information they need

[Berners-Lee et al. 2000]. Due to an increasing number of individuals and organization publishing

their data as linked data, things are moving in that direction. Linked data builds upon existing

web standards such as HTTP, RDF, and URIs to create web pages that are machine-readable and,

ideally, machine-understandable. According to Berners-Lee1, the four rules of linked data are:

1. Use URIs to denote things.

2. Use HTTP URIs so that these things can be referred to and looked up (“dereferenced”) by

people and user agents.

3. Provide useful information about the thing when its URI is dereferenced, leveraging standards

such as RDF, SPARQL.

4. Include links to other related things (using their URIs) when publishing data on the Web.

The last of these rules is particularly critical in order to fully leverage the information published

on the Semantic Web. Links between related things, particularly related things from different

datasets, are what enables applications to move beyond individual silos of data towards synthesizing

information from a variety of data sources. Unfortunately, data publishers often don’t explicitly

specify links between their datasets and others. The field of ontology alignment attempts to discover

these links in an automatic or semi-automatic way. Developing efficient and effective alignment

systems is therefore an important step towards realizing the promise of the Semantic Web.

1http://www.w3.org/DesignIssues/LinkedData.html

1
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Figure 1.1: A ontology snippet describing a university from a teaching perspective.

Person	  

advises	   Faculty	  

taughtBy	  

Course	  

hasCredits	  
registeredFor	  

Student	  

Thing	  

int	  

subclassOf 

subclassOf 
subclassOf 

domain range 

domain domain 

range domain 

range 

Professor	  

salary	  

float	  

hasRank	  

“Assistant”	  
“Associate”	  

“Full”	  

oneOf 

domain 

range 

range 

domain 
subclassOf 

range 

1.1 Fundamental Vocabulary

Linked data seamlessly combines raw data with schema information that describes the meaning of the

data, in the form of an ontology. Tom Gruber, one of the early voices on knowledge representation

(and the creator of Siri), defines an ontology as a “specification of a conceptualization.” He elaborates

that an ontology defines the concepts and relationships within a domain [Gruber 1993]. We briefly

introduce the principle elements of ontologies here. Our goal is to present the minimum vocabulary

needed to digest the work in this document in an approachable manner. A more formal and extensive

treatment of these topics can be found in [Hitzler et al. 2011].

Figure 1.1 shows a portion of an ontology that describes a university. This example includes

concepts such as Person, Course, and Student. These are called classes. A class represents a

grouping of objects with similar characteristics. Classes are often arranged in a hierarchy using

subclass relationships. For instance, in our example Faculty is a subclass of Person. An instance (or

individual, we will use these terms interchangeably) is a particular object. An instance has a type

that is some class within the ontology. For example, an instance of type Course may be MA 123
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Figure 1.2: A ontology snippet describing a university from a human resources perspective.

Professor	  
Pay	  rate	  

Class	  

Teaching	  

Thing	  

subclassOf 

domain subclassOf 

domain 

range 

float	  

range 

range 

domain 

Manages	   Employee	  

subclassOf  

FullProf	  

AsstProf	  

AssocProf	  

oneOf 

StudentEmployee	  
subclassOf 

and an instance of type Faculty may be Dr. John Doe. This is somewhat analogous to classes and

instances of those classes in object-oriented programming languages, such as Java. Relationships

between instances, such as registeredFor and hasCredits, are called properties. All properties are

directed binary relations that map an instance with a type from the domain to something in the

range. Properties that map an instance to another instance (e.g. registeredFor, which maps an

instance of type Student to an instance of type Course) are object properties, whereas properties

that map an instance to a literal value (e.g. salary, which maps an instance of type Faculty to a

float value) are datatype properties. Common data types include integers, doubles, strings, and

dateTime. Both object properties and data properties must involve an instance. A third type of

property, called an annotation property, can be used to describe relationships between any types

of entities (i.e. instances, classes or other properties). All of this information: classes, properties,

and any restrictions on them, such as cardinality, disjointness, etc., are called the schema, or T-box

(for terminology), of the ontology. Conversely, the instance data, or A-box (for assertions), contains
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assertions about individuals using data from the T-box. Of the statements below, the first three

are from the T-box and the last one is from the A-box. These statements are written in the Web

Ontology Language (OWL)2.

<owl:Class rdf:about="#Professor">

<rdfs:subClassOf rdf:resource="#Faculty"/>

</owl:Class>

<owl:ObjectProperty rdf:about="#advises">

<rdfs:range rdf:resource="#Student"/>

<rdfs:domain rdf:resource="#Faculty"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="salary">

<rdfs:domain rdf:resource="#Faculty"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#double"/>

</owl:DatatypeProperty>

<owl:Thing rdf:ID="Dr\_John\_Doe">

<rdf:type rdf:resource="#Professor"/>

<advises rdf:resource="#Johnny\_Smith" />

<salary rdf:datatype="\&xsd;double">90000</salary>

</owl:Thing>

Many of the ontologies available on the web today are heavily skewed towards either T-box or

A-box. For instance, there is a project3 to publish the content of the MusicBrainz online music

catalog4 as linked data using the Music Ontology5. The Music Ontology contains 54 classes, 153

properties, and essentially no logical axioms describing relations between these, other than domain,

range, or subsumption. On the other hand, there are more than 75,000 instances represented.

This combination of lightweight ontology combined with reams of instance data is typical of many

datasets available on the Semantic Web. On the other hand, there are some ontologies that contain

very complex models of a domain but little or no instance data. The biomedical community has

2http://www.w3.org/TR/owl2-overview/
3https://wiki.musicbrainz.org/LinkedBrainz
4https://musicbrainz.org
5http://musicontology.com
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been at the forefront of developing such ontologies, with efforts like SNOMED CT6.

1.2 Ontology Alignment

Engineering new ontologies is not a deterministic process – many design decisions must be made,

and the designers’ backgrounds and the application they are targeting will influence their decisions

in different ways. The end result is that even two ontologies that represent the same domain will not

be the same. They may use synonyms for the same concept or the same word for different concepts,

they may be at different levels of abstraction, they may not include all of the same concepts, and they

may not even be in the same language. And this is in the best case. In real-world datasets there are

often problems with missing information, inconsistent use of the T-box when describing individuals,

and logically inconsistent axioms. The goal of ontology alignment is to determine when an entity in

one ontology is semantically related to an entity in another ontology (for a comprehensive discussion

of ontology alignment, including a formal definition, see [Euzenat and Shvaiko 2007]).

An alignment algorithm takes as input two ontologies and produces a set of matches consisting of

a URI specifying one entity from each ontology, a relationship (typically equality or subsumption),

and an optional confidence value that is generally in the range of 0 to 1, inclusive. For example, an

alignment system given the ontologies in Figures 1.1 and 1.2 might produce matches including:

ont1:Course, ont2:Class, =, 0.9

ont1:Faculty, ont2:Employee, <, 0.6

The term ontology alignment can refer to aligning the entire ontology or just the entities in the

T-box; aligning the instance data is generally called co-reference resolution. Though not necessary,

in practice alignments are often interpreted under the closed world assumption, in the sense that

any entity pairs not mentioned in an alignment are assumed to have no relationship.

Many alignment systems share a common general organization, shown in Figure 1.3. Because

ontologies can contain millions of entities, it is often infeasible to compare every entity in one

ontology to every entity in the other. Therefore, alignment systems sometimes employ a filtering

or hashing step to determine which entities to compare [Duan et al. 2012; Hartung et al. 2013].

Alignment systems typically use a combination of three different approaches to evaluate entity

similarity: syntactic, semantic, and structural similarity metrics. Syntactic metrics compare entities

from each of the ontologies to be aligned based on strings associated with the entities. The strings

are generally the entity label, but can also include comments or other annotations of the entity.

6http://www.ihtsdo.org/snomed-ct/
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Figure 1.3: General structure of an ontology alignment system.

Ontology	   Ontology	  

Alignment	  System	  
Filtering	  /	  Hashing	  

En6ty	  Similarity	  Comparison	  

Syntac6c	   Seman6c	   Structural	  

Match	  Genera6on	  

Inconsistency	  Checking	  and	  Repair	  

Alignment	  

Threshold	  

This type of metric is discussed in detail in Chapter 2. Semantic similarity metrics attempt to

use the meanings of entity labels rather than their spellings. External resources such as thesauri,

dictionaries, encyclopedias, and web search engines are often used to calculate semantic similarity

[Jain et al. 2010; Taylor et al. 2005]. Structural techniques consider the neighborhoods of two entities

when determining their similarity. For instance, two entities with the same superclass that share

some common instances are considered more similar than entities that do not have these things in

common. Graph matching techniques are often used for this [Gallagher 2006; Di Martino 2009]. An

alignment system may use zero or more of each type of similarity metric. The values from multiple

approaches may be combined to form a single measure of similarity, or they may be used in a serial

fashion to filter potential matches down to the most likely candidates. At some point, a final list of



1.2. ONTOLOGY ALIGNMENT 7

related entities is generated, frequently by including any matches with a confidence (similarity) value

higher than some threshold. Additionally, alignment systems may use some form of inconsistency

checking and repair after the matching process in order to ensure a merged ontology produced using

the alignment is logically consistent [Meilicke 2011; Santos et al. 2013; Pesquita et al. 2013].

Ideally, alignment systems should be able to uncover any entity relationships across two ontologies

that can exist within a single ontology. Such relationships have a wide range of complexity, as shown

in Figure 1.4. The simplest type of relationship is 1-to-1 equivalence or disjointness of two entities

(i.e. all instances of A are also instances of B or an instance of A is definitely not an instance of B).

The relation ont1:Course = ont2:Class is an example of this type of match, as is ont1:registeredFor

disjoint ont2:Teaching (i.e. someone cannot both register to take a course and teach it). The next

complexity level is subsumption relationships, i.e. that an entity in one ontology is a subclass or

superclass of an entity in another ontology. ont1:Faculty ⊂ ont2:Employee is an example of this.

Even harder to find are 1-to-many equivalence or subsumption relationships between entities, such as

the union of ont2:AsstProf, ont2:AssocProf, and ont2:FullProf is equivalent to ont1:Professor. This

causes a complexity problem. To find 1-to-1 relationships, an exhaustive search needs to compare

every entity in the first ontology to every entity in the second ontology, which may be feasible for

small ontologies. To find 1-to-m relationships an exhaustive approach would need to compare each

entity in the first ontology to all possible combinations of m entities in the second ontology, which

is not generally possible. Finding arbitrary n-to-m relationships is the most complex alignment

task. By “arbitrary,” we mean any type of relationship, not restricted to equivalence, disjointness,

or subsumption. An example of this might be that a ont1:Professor with an ont1:hasRank value

of “Assistant” is equivalent to an ont2:AsstProf. Such complex relationships would need to be

expressed as logical rules or axioms.

Nearly all existing alignment systems fall at the simplest end of this scale. A few systems,

including BLOOMS [Jain et al. 2010] and PARIS [Suchanek et al. 2011b], are capable of finding

subsumption relationships across ontologies. CSR [Spiliopoulos et al. 2010] and TaxoMap [Hamdi

et al. 2010] attempt to find 1-to-m equivalence and subsumption relationships. In general though,

most research activity in the field of ontology alignment remains focused on finding 1-to-1 equivalence

relations between ontologies. Current benchmarks for alignment encourage this to some degree, since

they are focused on evaluating performance on finding equivalent pairs of classes and instances.

Alignment systems have become quite proficient at this task. Figure 1.5 shows that the top systems

on the widely-respected OAEI Conference test set are achieving f-measures of around 0.75. As we

will show in Chapter 3, this is nearing the level of consensus that humans familiar with ontology

design have for the alignment tasks in this benchmark. We feel that alignment research is in danger
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Figure 1.4: Complexity range of entity relationships between ontologies.
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of becoming stuck in a “local maximum”, and it may be time to make a concerted push towards

discovering more complex semantic relationships. Before we can do that, however, one small problem

remains: while the performance on finding equivalent pairs of classes and instances has become quite

good, identifying equivalent properties remains challenging for most alignment systems. Exploring

this issue and possible approaches to solving it is the focus of this dissertation.

1.3 Improving Performance on Property Alignment

In this work we explore the problem of poor performance of current alignment systems on align-

ing properties compared to that of aligning classes and instances. We begin by investigating the

performance of string similarity metrics as applied to ontology alignment in Chapter 2. We show

that, by intelligently choosing string similarity metrics based on the characteristics of the partic-

ular ontologies to be aligned, we can actually achieve performance quite competitive with current

systems using only string similarity metrics. We also show that the performance of such string

metrics when aligning classes is approximately four times better than that of aligning properties for

a popular alignment benchmark. These results hold even if strategies proposed by other researchers

to improve performance on properties, such as word stemming or stopword removal, are employed.

Having established the poor performance of current string similarity metrics for property align-

ment, we seek to develop a new string-based approach. Ideally, the approach should produce sim-

ilarity values that correspond reasonably well to the degree of consensus among humans on the
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Figure 1.5: Best and median f-measure throughout the history of the OAEI Conference track.
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similarity of two properties. Unfortunately, there is only one established benchmark that contains

matches between properties: the Conference track of the Ontology Alignment Evaluation Initiative.

This benchmark was developed primarily by just three people, and the confidence value of every

match is 1.0. We therefore find ourselves without a suitable test case with which to evaluate our

method. The work presented in Chapter 3 seeks to remedy this. First, we use a survey of 13 experts

together with Amazon’s Mechanical Turk platform to crowdsource a more nuanced version of the

Conference benchmark, with confidence values indicative of the degree of consensus among the sur-

veyed individuals. Next, we extract a connected subgraph from the DBPedia and YAGO ontologies

that contain all of the properties, together with the classes and instances related to them. The result

is a pair of real-world ontologies suitable to evaluate property alignment that is of a size within the

capabilities of most alignment systems. While we do not have a complete manually-curated refer-

ence alignment for this test set, the PARIS alignment system has produced some initial results for

the complete versions of these ontologies, and in Chapter 4 we present our results. We use these

initial alignments together with crowdsourced input from Mechanical Turk to conduct a preliminary

assessment of the quality of results.

In Chapter 4 we further make the case that property alignment is an important topic by illus-

trating the much higher performance on classes versus properties of the current best-performing

alignment systems. An analysis of false positives and false negatives commonly produced by these
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systems shows that an improved similarity metric has the potential to eliminate many mistakes. We

therefore introduce a new string-based alignment system, PropString, and evaluate its performance

against a system based on soft TF-IDF, the best-performing existing string metric as identified in

Chapter 2. The results are quite encouraging, with a precision-oriented version of PropString able to

achieve perfect precision on the Conference benchmark while maintaining the recall of soft TF-IDF

and a recall-oriented configuration that doubles the recall of soft TF-IDF while still achieving 50

percent better precision. Finally, we apply PropString to aligning the properties of two real-world

ontologies and compare the results to that of soft TF-IDF and PARIS, a full-featured alignment

system.

The main contributions of this work are:

• An extensive survey of the performance of string similarity metrics and string preprocessing

strategies (e.g. stopword removal, stemming, translation, etc.) as applied to ontology alignment.

• Guidelines for choosing high-performing string similarity metrics based on easily-computed char-

acteristics of the ontologies to be aligned.

• Quantification of the difference in performance of both string similarity metrics and current

state-of-the-art alignment systems on classes versus properties.

• Creation of a more nuanced version of the only generally accepted alignment benchmark that

involves property matches, backed by expert opinion and crowdsourcing.

• Creation of a real-world property-centric alignment test set that is scaled to be within the

capabilities of most existing alignment systems.

• Introduction of a string-based property alignment approach designed for accurate similarity

computation between properties, and evaluation of its performance.



2

String Similarlity

In researching past and present alignment systems, it became obvious that nearly all such systems

make use of a string similarity metric. But despite the ubiquity of these metrics, there has been

little systematic analysis on which string similarity metrics perform well when applied to ontology

alignment. This chapter seeks to fill that gap by analyzing the performance of string similarity

metrics in this domain, as well as the utility of string preprocessing approaches such as tokenization,

translation, synonym lookup, and others.

This study leads naturally to a follow-up question: how much performance can we squeeze out of

string-based techniques? We therefore consider how much an existing alignment algorithm can be

improved by incorporating string similarity metrics that are optimized for the particular ontology

matching problem at hand.

In particular, we seek to answer the following questions:

• What is the most effective string similarity metric for ontology alignment if the primary concern

is precision? recall? f-measure?

• Does the best metric vary based on the nature of the ontologies being aligned?

• Does the performance of the metrics vary between classes and properties?

• Do string preprocessing strategies such as tokenization, synonym lookup, translations, or nor-

malization improve ontology alignment results?

• What is the best we can do on the ontology alignment task using only string preprocessing and

string similarity metrics?

• When faced with the task of aligning two ontologies, how can we automatically select which string

similarity metrics and preprocessing strategies are best, without any training data available?

11
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There has been some prior analysis of string similarity metrics in the context of ontology align-

ment as part of the development of a new string similarity metric designed specifically for this

domain done by Stoilos and his colleagues [Stoilos et al. 2005]. They compared the performance

of their own metric to that of Levenstein, Needleman-Wunsch (a weighted version of Levenstein),

Smith-Waterman, Monge Elkan, Jaro Winkler, 3-gram, and substring on a subset of the OAEI

Benchmark test set. The Benchmark test set is an older OAEI track that was phased out in 2010

in favor of a dynamically generated test set. Stoilos and his colleagues found that the Monge Elkan

and Smith Waterman metrics performed very poorly on this task. The metric developed by the

researchers performed the best. Another piece of work done in this area is a report produced by

the Knowledge Web Consortium in 2004 that described of a variety string (terminological) metrics

applied to the problem of ontology alignment [Euzenat et al. 2004]. This document also discussed

string preprocessing strategies such as normalization and stemming.

When the area of interest is expanded to include string similarity metric studies for other domains,

we find some additional interesting surveys. For instance, Branting looked at string similarity metrics

as applied to the names of people, businesses, and organizations, particularly in legal cases [Branting

2003]. Nine categories of name variations were identified: punctuation, capitalization, spacing,

qualifiers, organizational terms, abbreviations, misspellings, word omissions, and word permutations.

His work evaluated the performance of various combinations of normalization, indexing (determining

which names would be compared to one another) and similarity metrics. He found that string

normalization was useful for this application and that a string similarity metric that he called

RWSA (described below) resulted in the best performance. In addition, Cohen, Ravikumar, and

Fienberg did a very thorough analysis of string similarity metrics as applied to name-matching tasks

[Cohen et al. 2003]. They found that TF-IDF, Monge Elkan, and Soft TF-IDF performed well on

the datasets they analyzed. In addition, they developed the SecondString Java library of string

similarity metrics, which has become very widely used in the research community (including in our

work here).

Some researchers have not set out to study string similarity metrics but have learned some

interesting things about the topic while developing ontology alignment systems. For instance, the

developers of Onto-Mapology tried Jaro, Jaro-Winkler, TF-IDF, and Monge Elkan in their alignment

system and found Jaro-Winkler to have the highest performance [Bethea et al. 2006], and the

developers of SAMBO, which focuses on biomedical ontologies, found that a weighted sum of n-

gram, edit distance, and an unnamed set metric performed better than any of those metrics alone

[Lambrix et al. 2008]. In addition, the X-SOM developers note that the optimal combination of

metrics does not vary based on the domain of the ontologies but rather based on their design
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characteristics [Curino et al. 2007].

While string similarity metrics are certainly not a new area of research, it remains unclear which

string metric(s) are best for use in ontology alignment systems. In the OAEI competition algorithms

surveyed for this work, 24 different string similarity metrics were used. In just the work cited above,

Monge Elkan was found to be among the best performing metrics for name matching but among

the worst performing for ontology alignment, yet several of the systems in the OAEI competition

use Monge Elkan. Since nearly all alignment algorithms use a string similarity metric, more clarity

in this area would be of benefit to many researchers. The work presented here expands on the

previous efforts discussed above by considering a wider variety of string metrics, string preprocessing

strategies, and ontology types. It also takes the work further by placing the string metrics into a

complete ontology alignment system and comparing the results of that system to the current state

of the art.

2.1 String Similarity Metrics

The Ontology Alignment Evaluation Initiative has become the primary venue for work in ontology

alignment. Since 2006, participants in the OAEI competition have been required to submit a short

paper describing their approach and results. All of these papers were surveyed to determine what

lexical metrics were employed and what preprocessing steps were being used (or proposed). In cases

where the paper was not explicit about the string similarity metric used, the code for the alignment

algorithm was downloaded and examined when possible. The results of this survey are shown in

Appendix B.

We can group string metrics along three major axes: global versus local, set versus whole-string,

and perfect-sequence versus imperfect-sequence.

Global versus local refers to the amount of information the metric needs in order to classify a

pair of strings as a match or a non-match. In some cases, the string metric needs to compute some

information over all of the strings in one or both ontologies before it can match any strings. Such a

metric is global. In other cases, the pair of strings currently being considered is all the input that is

required. Such a metric is local. Global metrics can be more tuned to the particular ontology pair

being matched, but that comes at the price of increased time complexity.

Perfect-sequence metrics require characters to occur in the same position in both strings in order

to be considered a match. Imperfect-sequence metrics match characters as long as their positions in

the strings differ by less than some threshold. In some metrics, this threshold is the entire length

of the string. Imperfect-sequence metrics are thought to perform better when the word ordering
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of labels might differ. This is common in biology-based ontologies. For instance, we would like to

match “leg bone” with “bone of the leg.” Imperfect sequence metrics are more likely to identify such

matches. The drawback is that they also frequently result in more false positives. For instance, the

words “stop” and “post” would be a perfect match for an imperfect-sequence metric if the threshold

were the entire length of the string.

Largely orthogonal to these axes lie set-based string similarity metrics. A set-based string metric

works by finding the degree of overlap between the sets of tokens contained in two strings. Tokens

are most commonly the words within the strings. The set-based metric must still use a base string

metric to establish if the individual tokens are equal (or close enough to be considered equal). This

“helper” metric is often exact match, but it could be any non-set string metric. Word-based set

metrics are generally thought to perform well on longer strings such as sentences or documents

whereas they are assumed to give relatively high precision but low recall for shorter strings. Many

ontologies have elements with short names that contain only a word or two, but ontologies in some

domains may have longer labels. Also, the labels of individuals (versus classes or properties) in

an ontology often have longer labels. Word-based set string similarity metrics may perform well in

these situations.

The list below contains all string similarity metrics found in the review of OAEI participants

and categorizes them based on the classifications described above. For set-based metrics, the un-

derlying base metric used is given in parentheses. One combination does not contain any metrics:

non-set/global/perfect-sequence. A subset of these metrics has been chosen for analysis related to

various aspects of the ontology alignment problem. These metrics were chosen to reflect those most

commonly used in existing alignment systems as well as to cover as fully as possible all combinations

of the classification system provided. The chosen metrics are shown in bold.

• Set

– Global

∗ Perfect-sequence

· Evidence Content (with exact)

· TF-IDF (with exact match)

∗ Imperfect-sequence

· Soft TF-IDF (with Jaro-Winkler)

– Local

∗ Perfect-sequence
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· Jaccard (with exact match)

· Overlap Coefficient (with exact)

∗ Imperfect-sequence

· RWSA

· Soft Jaccard (with Levenstein)

• Non-set

– Global

∗ Perfect-sequence

· None

∗ Imperfect-sequence

· COCLU

– Local

∗ Perfect-sequence

· Exact Match

· Longest Common Substring

· Prefix

· Substring Inclusion

· Suffix

∗ Imperfect-sequence

· Jaro

· Jaro-Winkler

· Levenstein

· Lin

· Monge Elkan

· N-gram

· Normalized Hamming Distance

· Smith Waterman

· Smith Waterman Gotoh

· Stoilos

· String Matching (SM)
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The basic idea behind each metric is explained below. The list is organized alphabetically.

COCLU COCLU is short for Compression-based Clustering. The metric uses a Huffman tree to

cluster the strings in one ontology and then matches each string in the second ontology to the appro-

priate cluster. Strings in the same cluster are considered equivalent. Whether to put a new string

in a given cluster or create a new one is based on a distance metric called Cluster Code Difference

(CCDiff), which is the difference between the summed length of the Huffman codes of all the strings

in the cluster and the same with the new string added to the cluster. This has the effect of grouping

together strings with the same frequent characters, regardless of the order of those characters. More

information about COCLU can be found in [Valarakos et al. 2004].

Document Indexing The idea behind this approach is to use existing document indexing and

retrieval tools as a string similarity metric. Each entity in the second ontology to be matched is

treated as a document. The content of the document varies in different approaches. Options include

any combination of an entity’s label, name, id, comment, neighbors, ancestors, descendants, and

instances. The documents (e.g. entities) are first indexed by a standard search engine tool such as

Lucene or Indri. Then entities in the first ontology to be matched are treated as search queries over

the second ontology. Matches are made to the best search results, provided that the quality is above

a threshold set by the user.

Exact Match The most straightforward string similarity metric, exact match simply returns one

if the two strings are identical and zero otherwise.

Evidence Content Evidence content is a cousin of the Jaccard metric. Rather than weighting each

word equally, however, words are weighted based on their evidence content, which is the negative

logarithm of the frequency of the number of entities a word appears in, relative to the entire ontol-

ogy. See [Gaudan et al. 2008] for a discussion of this metric with respect to ontology alignment.

Hamming Distance (normalized) The Hamming distance is the number of substitutions required

to transform one string into another. The normalized version divides this distance by the length of

the string. This is similar to the Levenstein distance, but it only applies to strings of the same length.

Jaccard This is a classic string similarity metric. The formula is:

Jaccard(s1, s2) = |A∩B|
|A∪B|
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The Jaccard metric is most commonly used as a set metric, where the union of A and B refer to

all of the unique words in the two strings being compared and the intersection refers to the words

common to both strings (as determined by simple string equality). It is also possible to use this

metric as a base rather than set metric by considering individual letters instead of words in the

strings.

Jaro This is another classic string similarity metric. The formula is:

Jaro(s1, s2) = 1
3 ( m
|s1| + m

|s2| + m−t
m )

where m is the number of “matching” characters and t is the number of transpositions. Two char-

acters match if they are not further apart than b(max(|s1|, |s2|)/2) − 1c. Transpositions are cases

where two characters match but appear in the reverse order.

Jaro-Winkler This variation on the Jaro metric gives preference to strings that share a common

prefix. The thought is that many similar strings, particularly verbs and adjectives, have common

roots but a variety of possible endings. The formula is:

JaroWinkler(s1, s2) = Jaro(s1, s2) + (lp(1− Jaro(s1, s2))

where l is the length of the common prefix, up to four characters, and p is a weight for consideration

of the common prefix (this must be less than 0.25 and is usually set to 0.1).

Longest Common Substring (LCS) This metric simply normalizes the length of the largest

substring that the two strings have in common. The formula is:

LCSSim(s1, s2) = 2·|maxCommonSubstring(s1,s2)|
|s1|+|s2|

where |x| is the number of characters in a string x.

Levenstein Edit Distance This is by far the most commonly used string similarity metric in on-

tology alignment systems. The Levenstein edit distance is the number of insertions, deletions, and

substitutions required to transform one string into another. It can be normalized by dividing the

edit distance by the length of the string (either the first string, to create an asymmetric metric, or

the average of the lengths of both strings). Variations on this metric weight different types of edits

differently.

Lin This metric is described in [Lin 1998]. The idea behind this metric is that the similarity between

two things can be assessed by taking a measure of what they have in common and dividing by a

measure of the information it takes to describe them. This definition has its basis in information



2.1. STRING SIMILARITY METRICS 18

theory. They apply this intuition to determining string similarity using the following formula:

Sim(s1, s2) =

2·
∑

t|tri(s1)∩tri(s2)

logP (t)∑
t|tri(s1)

logP (t) +
∑

t|tri(B)

logP (t)

where tri enumerates the trigrams in a string and P (t) is the probability of a particular trigram

occurring in a string, which is estimated by their frequencies in the words (i.e. over all of the words

in the ontologies).

Monge Elkan Monge and Elkan describe both a set-based similarity metric and a variant of the

Smith-Waterman metric in their paper [Monge and Elkan 1996]. Different groups appear to refer to

each of these as the “Monge Elkan metric.” The SecondString library, a Java-based implementation

of many different string similarity metrics, implements the Smith-Waterman variant as Monge Elkan,

so that is what we will consider here.

This metric uses the Smith-Waterman approach with a match score of -3 for mismatched charac-

ters, +5 for the same characters (case insensitive), and +3 for “approximately” the same characters.

This approximation is a variation on the original Smith-Waterman, along with the non-linear gap

penalties used: 5 for a gap start and 1 for a gap continuation. The alphabet is upper and lower case

letters, digits, period, comma, and space – all other characters are ignored.

Two characters are approximately equal if they fall into the same set:

• {d t}

• {g j}

• {l r}

• {m n}

• {b p v}

• {a e i o u}

• {. , space}

N-gram This metric converts each of the strings into a set of n-grams. For instance, if one of the

words is “hello” and n is 3, the set of n-grams would be {hel, ell, llo}. The resulting sets for both

strings are then compared using any set similarity metric (cosine similarity and Dice’s coefficient

are common). A variation is to have special characters to indicate “prior to the start of the string”

and “after the end of the string.” Using this approach, “hello” would result in the set {##h, #he,
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hel, ell, llo, lo%, o%%}.

Overlap Coefficient This is very similar to the Jaccard metric. The formula is:

Overlap(s1, s2) = |A∩B|
min(|A|,|B|)

where A is the set of tokens (either words or characters) in the first string and B is the same for the

second string.

Prefix This metric returns one if the first string is a prefix of the second, zero otherwise.

RWSA RWSA stands for Redundant, Word-by-word, Symmetrical, Approximate. This is based on

the classification system for string similarity metrics presented in [Branting 2003]. Each string is

indexed by the Soundex representation of its first and last words. Soundex is a phonetic encoding

consisting of the first letter of the string followed by three digits representing the phonetic categories

of the next three consonants, if they exist. The phonetic categories are:

1. B, P, F, V

2. C, S, K, G, J, Q, X, Z

3. D, T

4. L

5. M, N

6. R

When comparing two strings, a list of possible matches is retrieved by hashing the shorter of the

two strings, and the remainder of the algorithm is run on these potential matches to find the best one

and determine if it is above a threshold. These potential matches are all considered with respect to

the indexing string. Both strings are broken into their component words. Two strings are considered

to be a match if each word in the smaller of the two strings approximately matches a unique word

in the larger string. An approximate match is one in which the edit distance is within a mismatch

threshold. When computing the edit distance, there is a penalty of 1.0 for insertions, deletions and

substitutions and a penalty of 0.6 for transpositions. The indexing to retrieve candidate matches

may enable this metric to be used on larger ontologies than others that require each string to be

compared against every other.
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String Matching (SM) This metric was developed by Alexander Maedche and Steffen Staab and

is described in [Maedche and Staab 2002]. It is essentially a normalized Levenstein edit distance in

which the difference between the length of the shorter string and the edit distance is divided by the

length of the shorter string.

Smith-Waterman This is a variant of the Needleman-Wunch metric and like that metric, it uses

a dynamic programming algorithm [Durbin 1998]. To compare two strings, a matrix is created with

the number of columns equal to the length of the first string and the number of rows equal to the

length of the second string. The first row and first column are all zeros. All other elements i, j are

set to the maximum of the following:

• 0

• H(i − 1, j − 1) + w(s1(i), s2(j)), for a match (mismatch) where w is the weight for a match

(mismatch)

• H(i − 1, j) + w(deletion), for a deletion where w(deletion) is the starting or continuing gap

penalty

• H(i, j−1) +w(insertion), for an insertion where w(insertion) is the starting or continuing gap

penalty

Once this matrix has been created, the distance between the two strings is found by starting

with the highest value in the matrix and moving either up, left, or diagonally up and left, towards

whichever value is highest. This is repeated until either a zero or the upper left corner of the matrix

is reached. The distance is the sum of all of the values that were traversed.

Smith Waterman Gotoh This is a variation of the Smith-Waterman metric that has affine (non-

linear) gap penalties. Because the length of the gaps doesn’t matter in this version (a flat penalty

is assessed for elongating an existing gap), a significantly faster implementation is possible [Gotoh

1982].

Soft Jaccard Unlike the Jaccard metric, soft Jaccard is a set metric only. It must be used in

conjunction with a base similarity metric. First, the base similarity metric is run on all combinations

of the words in both strings. The metric counts the number of these pairs in which the base metric

result is greater than some threshold. This number is then divided by the number of words in the

string with the higher word count. This is summarized in the formula below:
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SoftJaccard(s1, s2, t) =
|sim(Ai,Bj)>=t|

max(|A|,|B|)

where A is the set of words in the first string, B is the set of words in the second string, t is the

threshold for the base similarity metric, and sim is the base metric. The subscript i goes from 0 to

the number of words in the first string and j does the same for the second string.

Soft TF-IDF This version of the TF-IDF metric is identical except that rather than requiring

exact matches when computing the cosine similarity, words are considered matching if their simi-

larity according to some base similarity metric is above a threshold. In our work, we have followed

the lead of Cohen and his colleagues in [Cohen et al. 2003] and used Jaro-Winkler as the base metric.

Stoilos Metric for Ontology Alignment (SMOA) This string metric was specifically developed

for use in ontology alignment systems. The main idea is to explicitly consider both the commonalities

and differences of the two strings being compared. The formula is:

Sim(s1, s2) = Comm(s1, s2)−Diff(s1, s2) + JaroWinkler(s1, s2)

Comm(s1, s2) finds the longest common substring, then removes it from both strings and finds

the next longest substring, and so on until none remain. Then their lengths are summed and divided

by the sum of the original string lengths. The formula for this is:

Comm(s1, s2) = 2·
∑
|maxCommonSubString(s1,s2)|

|s1|+|s2|

where |x| is the number of characters in a string x.

Diff(s1, s2) is computed using the following formula:

Diff(s1, s2) = uLen(s1)·uLen(s2)
p+(1−p)·(uLen(s1)+uLen(s2)−uLen(s1)·uLen(s2))

where uLen is the length of the unmatched part of the string from the first step divided by the

length of the corresponding original string and p is the importance of the difference factor. The

authors experimentally found 0.6 to be a good choice.

This metric ranges from -1 for completely different strings to +1 for identical strings. More

information about this metric can be found in [Stoilos et al. 2005].

Substring Inclusion This metric returns one if the first string is contained within the second and

zero otherwise.

Suffix This metric returns one if the first string is a suffix of the second one and zero otherwise.

TF-IDF/cosine TF-IDF stands for Term Frequency – Inverse Document Frequency. It is a tech-

nique used for document indexing in information retrieval systems. The term frequency is the
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number of times a word appears in a document, divided by the number of words in the document.

The inverse document frequency is the logarithm of the number of documents divided by the number

of documents that contain the word in question. The idea behind using this approach for ontology

alignment is that it is more indicative of similarity if two entities share a word that is rare in the

ontologies than if they share a common word such as “the.”

When computing the metric, the term frequency and inverse document frequency for each word

in each document is computed (where document here means the same as described for the document

indexing metric). This must be done for both ontologies before any entities can be compared. Then

to compare two strings, each word’s term frequency is multiplied by its inverse document frequency,

creating a vector for each string. The string similarity is then the cosine similarity of the vectors.

2.2 String Preprocessing Strategies

This section describes all of the preprocessing approaches that were either tried or proposed by OAEI

participants. The approaches mentioned by more than two participants are shown in bold italics

– these will be examined in detail. Some operations are directly beneficial to the string similarity

metric, while others primarily help with returning valid synonyms or translations (and so hopefully

benefit the metric indirectly).

These approaches can be divided into two major categories: syntactic and semantic. Syntactic

preprocessing methods are based on the characters in the strings or the rules of the language in which

the strings are written. They can generally be applied quickly and without reference to an outside

data store. Semantic methods relate to the meanings of the strings. These methods generally involve

using a dictionary, thesaurus, or translation service to retrieve more information about a word or

phrase.

• Syntactic

– tokenization

– split compound words

– normalization

– stemming/lemmatization

– stop word removal

– consider part-of-speech (i.e. weight functional words less)

• Semantic



2.2. STRING PREPROCESSING STRATEGIES 23

– synonyms

– antonyms

– categorization

– language tag

– translations

– expand abbreviations and acronyms

Abbreviations and Acronyms Abbreviations and acronyms are particularly challenging for string

similarity metrics. There have been several attempts to expand such shortcuts into their original

representation by either looking them up in external knowledge sources or using language produc-

tion rules. Reliable expansion of abbreviations and acronyms would be useful not just for the string

metric, but also in improving synonym lookup and translations.

Antonyms Some similarity metrics consider differences as well as commonalities. A possible strat-

egy for such metrics is to gather antonyms from a thesaurus in the same manner that synonyms are

retrieved. These can then be used to determine that two strings are not equivalent.

Categorization In this approach, an external source containing a category hierarchy is used. Strings

falling into the same category are considered more similar.

Compound Words It is possible that splitting compound words into their constituents can im-

prove the performance of some set-based string similarity metrics.

Language Tag Ontology files sometimes use a language tag to specify the language of a particular

string in the ontology. This can be used to avoid potentially misleading comparisons of words in dif-

ferent languages. It can also be used in conjunction with translations, to determine which language

to translate from and which to translate to.

Normalization The idea behind normalization is to eliminate stylistic differences between strings

as much as possible. This generally involves putting all characters into either upper or lower case,

replacing punctuation characters with a space, and standardizing word order, often by alphabetizing

the words within the string. Normalization might also involve transliterating characters not in the

Latin alphabet to their closest equivalent.
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Part-of-speech Similar in concept to stop word removal, it is possible to remove “functional” words

such as articles, conjunctions, and prepositions from strings prior to assessing their similarity. An-

other possibility is to keep these words in the strings but weight them less than other words when

a set-based string similarity metric is used.

Stemming/Lemmatization Stemming attempts to eliminate grammatical differences between

words due to verb tense, plurality, and other word forms by finding the root of each word in the

string. This topic has been studied in computer science since the sixties, and there are many existing

algorithms. Stemming is both directly useful for string metrics and helpful in synonym lookup and

translation.

Stop Word Removal Stop words are the most commonly used words in a language. The idea

behind removing stop words from strings prior to computing their similarity is that very common

words add little useful information. There are many lists of stop words available for different lan-

guages.

Synonyms In this preprocessing phase, strings are supplemented with their synonyms using either

a general thesaurus such as WordNet or a domain-specific one such as UMLS for the biomedical

domain. Biomedical ontologies also frequently have synonyms embedded in the ontology itself. Syn-

onym lookup is by far the most often proposed preprocessing operation, but some who have actually

implemented it report that it did not improve the performance of their system (e.g. SAMBO,

GeRoMeSuite/SMB).

Tokenization Tokenization involves splitting strings into their component words. Word boundaries

vary based on implementation, but often some combination of whitespace, underscores, hyphens,

slashes, and lower-to-uppercase changes (to detect camelCase) is used. Tokenization is useful when

comparing ontologies with different naming conventions, such as underscores versus hyphens to de-

lineate words. This is particularly important for set-based string similarity metrics. In addition,

tokenization is also needed for some other preprocessing steps, such as synonym lookup, translations,

and word stemming.

Translation Translating strings when the ontologies to be matched are known to be in different

languages has been suggested for a long time, but implementation has only become common in

ontology alignment systems with the introduction of the Multifarm test set in the OAEI. The
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language tag can be used to know which languages are involved, or a sample of the words in the

ontologies can be analyzed to determine the languages.

2.3 Performance Evaluation

We have analyzed the performance of the selected string similarity metrics and preprocessing strate-

gies on several OAEI test sets, the most popular ontology alignment benchmarks. Additionally, we

have run the experiments on an analogous set of tests in order to evaluate the generalizability of the

results. This section describes our experimental framework and presents an analysis of the results.

2.3.1 Experimental Setup

Here we describe the experimental framework and metric implementations in enough detail that oth-

ers can reproduce our results. In addition, the source code for these experiments can be downloaded

from http://www.pascal-hitzler.de/pub/StringMetricTester.jar.

The Ontology Alignment Evaluation Initiative (OAEI)1 was started in 2004 with the goal of

making it easier for researchers to compare the results of their ontology alignment algorithms. The

organizers hold a contest each year in which participants run their algorithms on a variety of ontology

matching problems and compare the results based on precision, recall, and f-measure. The OAEI

features several tracks to test different types of ontology matching problems, three of which were

used in this work.

The Conference track consists of finding equivalence relations among 16 real-world ontologies

describing the same domain – conference organization. The ontologies are based on conference

websites, software tools designed to support conference organization, and input from experienced

conference organizers. These ontologies are all fairly small, with each one containing less than

200 classes and properties. The Multifarm track consists of the ontologies from the Conference

track translated by native speakers into eight different languages: Chinese, Czech, Dutch, French,

German, Portuguese, Russian, and Spanish (along with the original English). The goal is to align all

combinations of languages. Finally, the Anatomy track consists of two ontologies from the biomedical

domain: one describing the anatomy of a mouse and the other the anatomy of a human. As is

common for biomedical ontologies, these are significantly larger than those found in the Conference

track, with each containing around 3000 classes. More detail about the different OAEI tracks,

particularly the Conference track, can be found in Chapters 3 and 4.

In order to get a sense of whether the results on the OAEI test sets generalize to similar cases, we

1http://oaei.ontologymatching.org/
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have also run our tests on other ontology pairs of the same type. As an analog to the Conference test

set, we have used two BizTalk files representing the domain of purchase orders: CIDX and Excel.2

These were converted to an OWL format using a script that simply created a class for each entity

(because we are only using the labels and not any relationship information, this is sufficient). The

reference alignment for this dataset was created by domain experts. In addition, native speakers

have assisted us in translating these schemas into German, Portuguese, Finish, and Norwegian so

that we also have an analog for the OAEI Multifarm track. Finally, we have attempted to match the

Gene Ontology3 to the multifun schema4, both of which cover topics from biomedicine (the Gene

Ontology covers the general domain of genetics, while the multifun schema is a description of cell

function). The multifun schema was put into an OWL format using the same procedure as the

CIDX and Excel datasets. The reference alignment for this test set was also generated by domain

experts.5 The GO ontology and associated schema mappings are made possible by the work of the

Gene Ontology Consortium [Ashburner et al. 2000].

Our test framework takes the two ontologies to be aligned and compares the label of every entity

in the first ontology to every entity in the second ontology. The label is first considered to be

the URI of the ontology entity, with the namespace (everything before the # character) removed.

In the case that this approach results in an empty or null string, the “label” annotation of the

entity is used instead. For each pair of labels, the metric being tested is run in both directions:

metric.compute(labelA, labelB) and metric.compute(labelB, labelA). These results are put into two

separate two dimensional arrays. Then the stable marriage algorithm is run on these two arrays to

determine the best matches between the two ontologies. This algorithm finds a mapping such that,

if A is mapped to B and C to D, it is guaranteed that A does not prefer D to B while D prefers A to

C. This approach is used because in the OAEI reference alignments each entity is involved in at most

one equality mapping. The version of the stable marriage algorithm used is deterministic. Finally,

any mappings for which the minimum of metric.compute(labelA, labelB) and metric.compute(labelB,

labelA) is less than one threshold or the maximum of those two values is less than a second threshold

are thrown out. The resulting alignment is scored against the OAEI-provided reference alignment

in terms of precision, recall, and f-measure.

Due to the nature of the test framework, each metric requires at least two parameters: the

thresholds for the similarities between the two strings (in both directions). For each test, each

metric had both of the parameters initially set at 1.0. The parameters were then both decreased

2http://disi.unitn.it/˜accord/Experimentaldesign.html
3http://www.geneontology.org/GO.database.shtml
4http://genprotec.mbl.edu/files/MultiFun.html
5http://www.geneontology.org/GO.indices.shtml
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in steps of 0.1 until the f-measure ceased to improve. Then the first parameter was decreased in

steps of 0.1 while the second was held constant. Then the second parameter was decreased in steps

of 0.1 while the first was held constant. Then the first parameter was increased in steps of 0.1 and

finally the second parameter was increased in steps of 0.1. This entire process was repeated as long

as improvements in f-measure continued to be made. In addition, the soft set metrics (soft Jaccard

and soft TF-IDF) require an additional parameter. This was initially set at 0.9 (setting it at 1.0

would have negated the “soft” aspect of the metrics), the test was run according to the previous

description, then the third parameter was set to 0.8 and the process was repeated. This process was

repetitive in some cases, but it was a reasonably thorough search of the parameter space for each

metric.

Below we discuss the implementation details of the string preprocessing approaches that were

tested.

Tokenization Tokens are delimited by dash, underscore, space, camelCase, forward slash, and back

slash. Each token is put into all lowercase. This is done to prevent camelCase labels from retaining

a difference between tokens.

Stop Word Removal The Glasgow IR group’s stop words list is used.6 It consists of 318 common

English words. Tokenization is done prior to stop word removal.

Stemming The Porter stemming algorithm is used [Porter 1980]. Tokenization is done prior to

stemming to handle cases like runningTotal.

Normalization Any whitespace is replaced by a single space. Any letters with diacritic marks,

umlauts, etc are replaced with the closest corresponding letter from the English alphabet. Russian

characters are transliterated using the approach specified here: http://www.translit.cc/. We were

unable to transliterate Chinese symbols. As a final step, the label is tokenized and the tokens are

ordered alphabetically.

Synonyms This test was only run on the Conference and Anatomy test sets. The Multifarm test set

could be included in the future if appropriate electronic thesauri could be found for each language.

The labels are first tokenized and then synonyms are looked up either in WordNet, for the Conference

set, or in the “synonyms” attribute of the entity itself, for the Anatomy set.

6http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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There were some differences between using WordNet and the internal synonyms. The JWNL

Java WordNet API was used to query WordNet. Tokenization must be done to get reasonable hit

rates for synonym lookup from WordNet In addition, the WordNet API does its own form of word

stemming internally, and that was left in place because it is the most common way to use WordNet

in applications. A question arose on how to handle labels that are phrases when querying WordNet.

Looking up “masters thesis” returned only the synonyms for “masters” and nothing for thesis or for

the phrase as a whole. The same was true when masters thesis was used as the query (even though

WordNet will return items in a similar form, such as baseball bat). Therefore the synonym set is

generated by querying WordNet for each token in the label and aggregating the results. So for this

example, the synonym set contains all synonyms for masters plus all synonyms for thesis.

A second question concerned how to compute the overall similarity value based on the similarity

values of the synonyms. After some preliminary experimentation, it was determined that the syn-

onyms provided within the Anatomy ontologies are far more specific and relevant than those arrived

at by querying WordNet for the Conference ontologies. As a result, the best strategy for computing

overall similarity in the Anatomy case was to take the maximum similarity value of the label of the

first entity compared to that of the label and each of the synonyms of the second entity (and the

same for the other direction). For the WordNet case the best result was obtained by employing a

set similarity metric: the similarity values for the first entity’s label and all of its synonyms were

computed with respect to the second entity’s label and all of its synonyms. All of these values were

summed and divided by the size of the synonym set of the first entity, plus one for the label itself.

We also tried using the same approach on the Conference test set that was used on the Anatomy

test set, but the results were much worse than those resulting from the approach just outlined.

Translation Only the Multifarm test set was used for this experiment. Google Translate (via the

Google Translate API) is used to translate from one language to another. Google Translate can

handle translations between all of the languages in the OAEI test set. Unfortunately, it is not free.

The cost is $20 per 2 million characters. It cost $12.08 to align all of the ontology pairs in the test

set once. To avoid paying that for each metric multiple times (to optimize the parameter values),

the results were cached and the cache was used after the first run. This does not affect the accuracy

of the metrics. The service can also detect the language of the input it is provided with – the labels

of ten randomly chosen entities were submitted to the translation service to detect the language.

Google Translate does some internal preprocessing involving stemming, but Google does not provide

details on this.
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Following is a discussion of the implementation details for each string metric tested. We used

existing implementations from open source libraries whenever possible.

Exact The Java String class’s startsWith method is used for this metric. The reason for us-

ing startsWith rather than the equals method is that this makes the metric asymmetric. For

instance, exact.compute(“leg bone”, “leg”) returns 1 because “leg bone” starts with “leg” while

exact.compute(“leg”, “leg bone”) returns 0 since “leg” does not start with “leg bone”.

Jaccard The SecondString library implementation of this metric is used.

Jaro-Winkler The SecondString library implementation of this metric is used.

Longest Common Substring This metric was coded based on the following logic: find the shorter

of the two strings, for each character in that string, check to see if the longer string contains that

character. If it does, find the length of the longest common substring starting with that character.

The maximum of all of these lengths is then divided by the length of the first string and returned.

This is an asymmetric metric.

Levenstein The distance between the two input strings is computed using the SecondString imple-

mentation of the Levenstein metric. The distance is then normalized by dividing it by the length of

the first input string (creating an asymmetric metric). In order to have 1 rather than 0 represent a

perfect match, the normalized distance is then subtracted from 1.

Monge Elkan The SecondString implementation of this metric is used.

N-gram After some initial experimentation, n was set equal to 3 for all tests. This metric was coded

based on the following logic: construct all trigrams for each input string, representing characters

prior to the beginning of the string with ‘#’ and those after the end of the string with ‘%’. Return

the number of trigrams common to the two strings, divided by the number within the first string

(asymmetric metric), being sure to handle duplicate trigrams correctly.

Soft Jaccard A set of the unique words in the first string (where uniqueness is determined by a

Levenstein distance less than a threshold from any word already in the set) and another set of the

unique words in the second string are created. The intersection and union of these two sets are
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computed, and the metric returns the size of the intersection divided by the size of the union. The

Levenstein distance is computed using the Second String library implementation.

Soft TF-IDF The Second String library Soft TF-IDF class was used as the basis for this imple-

mentation. The internal metric used was the Second String implementation of Jaro Winkler. A

SimpleTokenizer was created to split the strings into words with whitespace as the delimiter. The

Soft TF-IDF dictionary was created using the words from all of the labels in both ontologies. If the

test considered synonyms, sets of synonymous words were maintained and only one representative

word from each set was added to the dictionary. If the test considered translation, the word was

first translated to the appropriate language before being added to the dictionary. A BasicString-

WrapperIterator was used to train the metric.

Stoilos This is coded based on the definition provided in the paper in which the metric was originally

proposed [Stoilos et al. 2005]. There was a point of confusion related to the Jaro-Winkler-based im-

provement factor mentioned in that paper, however. The paper states that the metric should range

from -1 to +1, but with that factor in it ranges from -1 to +2. We tried both approaches when

attempting to reproduce the results mentioned in the paper but achieved at best an f-measure that

was around 0.1 lower than what was reported. For instance, on the 301 benchmark test with a 0.6

threshold, our tests resulted in precision = .83 and recall = .68 for an f-measure of .75 while the au-

thors report a precision of .98, recall of .79, and f-measure of .87. The results using the Jaro-Winkler

improvement factor were significantly worse. The experiments here were conducted without that

factor included.

TF-IDF The Second String library TF-IDF class was used as the basis for this implementation. A

SimpleTokenizer was created to split the strings into words with whitespace as the delimiter. The

TF-IDF dictionary was created using the words from all of the labels in both ontologies. If the test

considered synonyms, sets of synonymous words were maintained and only one representative word

from each set was added to the dictionary. If the test considered translation, the word was first

translated to the appropriate language before being added to the dictionary. A BasicStringWrap-

perIterator was used to train the metric.

2.3.2 Results

In this section we review the results of the experiments described above.
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Figure 2.1: Results with no string preprocessing

2.3.2.1 OAEI Results

First, we look at the effect of the different string preprocessing strategies on precision, recall, and f-

measure for the OAEI test sets. Figures 2.1 through 2.7 show the results for one string preprocessing

strategy on all three OAEI datasets (Conference, Multifarm, and Anatomy). F-measure, precision,

and recall are all shown on the graphs.

Figure 2.1 shows the results of when no string preprocessing is employed.

The Conference dataset does not reveal much disparity among the string similarity metrics. If

we leave out the Monge Elkan and Longest Common Substring metrics, which perform very poorly,

we are left with very little standard deviation for either precision or recall in this test set. Also,

the optimal thresholds indicate that the best approach is to look for matches that are as exact as

possible.

The Multifarm test set is much more challenging – both precision and recall are less than one

fourth what they were for the same ontologies in English. This test set also reveals a much wider

disparity among string similarity metrics. There is a large standard deviation for both precision

and recall. This is likely because most ontologies, including these, contain the majority of the

semantic information in labels. This intrinsic information is hidden from string similarity metrics

by translation.
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Figure 2.2: Results with tokenization

The exact, n-gram, and TF-IDF metrics cannot generate any matches for the Anatomy test set.

Furthermore, the longest common substring, Stoilos, and Monge Elkan metrics perform very poorly.

For the remaining metrics, we find that this test is easier for string similarity metrics than the

Conference dataset. This is expected because biomedical datasets usually deal with a smaller, more

regular vocabulary. There is often a small set of nouns with associated modifiers. The precision for

this dataset is extremely high and the standard deviation of the precision is relatively low. There is a

much higher standard deviation of recall. In particular, the metric with the next-to-highest precision

(Soft Jaccard) has by far the lowest recall. This is a dataset where set metrics do particularly well,

again because the biomedical domain frequently involves phrases that can be presented in different

orders. The Anatomy test set is also interesting in that there is a more clear choice to be made

between metrics that have good precision and those that have good recall – there is not a lot of

overlap between these two sets.

Figure 2.2 shows the same results using tokenization.

On the Conference dataset, there were improvements in the recall of most metrics (a large one for

LCS and TF-IDF) with little to no decrease in precision, except for TF-IDF. The recall of TF-IDF

went from average to much better than any of the other metrics on this dataset with tokenization.

This improvement in recall seems primarily due to the use of underscores as word separators in some
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Figure 2.3: Results using stemming

ontologies and camelCase in others.

For the Multifarm test set there were no improvements in the best-performing metrics due to

tokenization.

After tokenization, the exact, n-gram, and TF-IDF metrics are capable of producing results on

the Anatomy dataset whereas without it they could not. In fact, exact now has perfect precision.

The recall of most metrics was improved slightly or left unchanged. In the case of the n-gram metric

this was significant enough to make it one of the best-performing metrics in terms of recall. These

changes were enough to change the set of top performing metrics in terms of f-measure as well.

In general, it makes sense to perform tokenization as a preprocessing step – it improves overall

performance (especially recall) slightly, particularly for metrics that involve exact match.

Figure 2.3 shows that when compared with tokenization as a baseline, stemming does not improve

performance on any of the test sets (it actually slightly hurts precision on the Conference set). The

only exception is that recall of the Soft TF-IDF metric is improved by 27% on the Conference test

set, and that metric becomes the best choice for that test set in terms of recall. Recall of the n-gram

metric on the Anatomy test set is hurt badly enough to move it out of the best-performing metrics

for that category.

Removing stop words lowers precision on the Conference test set and has essentially no effect on
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Figure 2.4: Results using stop word removal

the other two test sets when compared to tokenization (see Figure 2.4).

Figure 2.5 shows that normalization had little effect on the Conference test set. Performance in

terms of both precision and recall on the Multifarm test set greatly improved with normalization

(mostly due to the transliteration). Normalization had little effect on the precision or recall of any

metric on the Anatomy test set.

Figure 2.6 shows the results when synonyms are considered. This hurts both precision and recall

for all metrics on the Conference test set. On the Anatomy test set, the precision of all metrics was

either flat or worse than for tokenization alone, but the recall of several metrics improved enough to

raise the f-measure when synonyms were considered.

Translations result in huge improvements in both precision and recall for all metrics on the

Multifarm test set, both over tokenization alone and over normalization (see Figure 2.7). There is a

wide variation in the performance of metrics in this configuration on this test set. Also, the metrics

with good precision have mediocre recall and vice versa.

2.3.2.2 Comparative Results

The next set of graphs presents the results of the same tests on the non-OAEI datasets. These

were conducted in order to determine whether the results presented above are specific to the OAEI
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Figure 2.5: Results using normalization

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

Conf	  -‐	  
F-‐meas	  

Conf	  -‐	  
Prec	  

Conf	  -‐	  
Rec	  

Anat	  -‐	  
F-‐meas	  

Anat	  -‐	  
Prec	  

Anat	  -‐	  
Rec	  

Exact	  

Jaccard	  

Jaro	  Winkler	  

LCS	  

Levenstein	  

Monge	  Elkan	  

N-‐gram	  

SoK	  Jaccard	  

SoK	  TF-‐IDF	  

Stoilos	  

TF-‐IDF	  

Figure 2.6: Results using synonyms
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Figure 2.7: Results using translations

datasets or if they carry over to other ontologies of the same general type. Figure 2.8 shows the

f-measure of the best-performing metric using each preprocessing strategy while Figure 2.9 shows the

f-measure of each metric using the best-performing preprocessing strategy. The same information is

shown for the analogous OAEI dataset for comparative purposes. Variations in the absolute heights

of the bars between analogous datasets are to be expected because the overall difficulty of matching

a particular ontology pair may vary considerably – what we are looking for is the same general shape

of the bars for the adjacent sets (or a clear understanding of any differences).

For the most part the preprocessing strategies exhibit similar behavior on the analogous datasets,

as shown in Figure 2.8. The only exception is that stemming improves performance on the Genes test

set but not on Anatomy. Further analysis shows that this difference turns out to not be significant,

however. The TF-IDF metric is the top-performing metric on the Genes test set. It turns out that

many of the entities in the Genes dataset that are successfully matched using stemming contain the

word “transport” or “transporter”. When stemming is used, these two words are considered the

same and the TF-IDF metric weights them less due to a more frequent occurrence in the ontologies,

thereby allowing more correct results. In short, a single lucky break has resulted in a rather noticeable

variation in performance.

The significantly smaller sizes of the non-OAEI test sets cause more variability in metric perfor-
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Figure 2.8: F-measures of the best-performing metric on all test sets for all string preprocessing

strategies
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Figure 2.9: F-measures of all metrics on all test sets using the best-performing string preprocessing

strategy
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Figure 2.10: F-measures of all metrics on the classes and properties in the Conference dataset using

string tokenization

mance (i.e. because there is a small number of matches, a metric is more heavily rewarded if it “gets

lucky” on a particular match and more heavily penalized if it does not). However, we see from Fig-

ure 2.9 that choosing a string similarity metric is less important for “standard” ontologies because

performance varies little among metrics. This is not the case for the multilingual and biomedical

ontologies. In addition, we see that choosing a string similarity metric based on its performance on

the OAEI test sets leads to good relative performance on analogous ontology matching problems.

2.3.2.3 Classes vs Properties

Others have found that human experts have a more difficult time agreeing on when properties match

than on classes [Maedche and Staab 2002]. We seek here to determine if string similarity metrics also

have particular difficulty with properties. In this section we look at the performance of the metrics

on classes versus properties for the Conference and Multifarm datasets. There are no matching

properties in the Anatomy test set.

From Figures 2.10 and 2.11 it is evident that string similarity metrics perform much worse on

properties than on classes. It appears from an empirical analysis of the alignments that prop-

erties are particularly challenging for ontology alignment systems for several reasons. Properties
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Figure 2.11: F-measures of all metrics on the classes and properties in the Multifarm dataset using

string tokenization

frequently involve verbs, which can appear in a wider variety of forms than nouns (in addition to

plurality/conjugation, verbs vary by tense). There are also often more functional words, such as

articles and prepositions, in property names. Also, there are generally more common synonyms

available for the (often very generic) verbs in property names than the (often more specific) nouns

in class names. We therefore thought that stemming, stop word removal, or synonym lookup might

be effective when matching properties. However, that turned out not to be the case. Figure 2.12

shows the effect of various preprocessing strategies in combination with the two metrics that per-

formed the best on properties for the Conference test set: Monge Elkan and TF-IDF. Tokenization

is required for the TF-IDF metric to work because it is a global set metric. Normalization improved

the performance of Monge Elkan but not TF-IDF. Analysis of the results seems to indicate this is

because putting the words into alphabetical order reduced the number of gap penalties for matching

properties in Monge Elkan. This had no effect for TF-IDF because set metrics are not sensitive to

word order.

It is curious that properties are more easily matched on the Mulitfarm dataset. This dataset

consists of exactly the same ontologies as the Conference set, just translated into a variety of lan-

guages. It will be interesting to explore what is going on there, but the assistance of native speakers
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Figure 2.12: F-measures of Monge Elkan and TF-IDF on properties in the Conference dataset for

all of the string preprocessing strategies

of some of the other languages will likely be required.

The above results were collected using the best thresholds found by optimizing the f-measure on

the overall alignment problem (both classes and properties). In addition, we wanted to determine

whether it was helpful to choose different thresholds for classes and properties. Figures 2.13 and

2.14 show the best results achieved for property matching on both the Conference and Multifarm

datasets when the thresholds were optimized based solely on the f-measure for properties. The preci-

sion, recall, and f-measure when the thresholds were optimized for overall f-measure are reproduced

here for ease of comparison. The results are better than in the previous case, indicating that for

these datasets there is value in selecting different similarity metric thresholds for class and property

comparisons.

2.3.3 Analysis

The results of the different metrics on the test sets reveal a potential trap for developers of ontology

alignment systems. Results on the Conference test set, which is representative of many real-world

ontologies, do not reveal much difference in the performance of the metrics in terms of f-measure.

Basically, if you pick any string similarity metric and set the threshold high (i.e. between .9 and

1.0) then the results will be near optimal. However, the other test sets reveal that all string metrics

are not created equal – performance of different metrics on the multilingual and biomedical test sets

varied considerably. Choosing a string metric for use on these alignment tasks involves a significant

impact on precision and recall. The moral of the story is that when choosing a string metric for use
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Figure 2.13: F-measures of all metrics using tokenization on the Conference dataset when the thresh-

olds were optimized once for classes and properties together versus separately for properties

in an ontology alignment algorithm, one should consider the characteristics of the ontologies being

aligned and whether precision or recall is more important for the algorithm. Below are some general

guidelines:

• Standard ontology

– Precision: All but Monge Elkan

– Recall: TF-IDF

– F-measure: All but Monge Elkan and LCS

• Multilingual

– Precision: Soft Jaccard, Jaccard

– Recall: Soft TF-IDF

– F-measure: Soft TF-IDF

• Biomedical

– Precision: Levenstein
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Figure 2.14: F-measures of all metrics using tokenization on the multiform dataset when the thresh-

olds were optimized once for classes and properties together versus separately for properties
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– Recall: Jaccard, Soft Jaccard, Soft TF-IDF

– F-measure: Soft TF-IDF, Jaccard, Soft Jaccard

Of the preprocessing strategies analyzed, few were beneficial. Tokenization is useful if the nam-

ing conventions differ between the ontologies (camelCase versus underscores to separate words, for

example). Translation is very helpful when ontologies involve multiple languages. If translation is

not available, normalization can be useful for multilingual ontology pairs, particularly if one of the

languages uses a non-Latin alphabet and can be transliterated. Synonyms can be useful (particu-

larly with respect to recall) for biomedical ontologies, where the synonyms are often embedded in

the ontologies themselves.

2.4 String-based Ontology Alignment

With this analysis of string similarity metrics as applied to ontology alignment, we now turn to the

question of how far we can get using only string metrics. To answer this question we developed

a very simple ontology alignment algorithm. This algorithm works in the same way as our test

framework – comparing every label in the first ontology to every label in the second and using

the stable marriage algorithm to find the best mappings. The difference is that here we run the

algorithm repeatedly: first with a high-precision metric and then with a high-recall metric. If a

mapping in the second pass involves an entity that has already been used in the previous pass then

it is ignored. Because string metrics were found to perform extremely poorly on properties, this

approach does not attempt to match those (e.g. any property matches in the reference alignment

are automatically false negatives). For the Anatomy test set, the approach used here first runs the

high precision and high recall metrics on the entity labels themselves, and then considers synonyms.

For this proof-of-concept, the algorithm is hard-coded with the optimal metrics and thresholds for

the particular test set under consideration. The results are shown in Tables 2.1, 2.2, and 2.3, along

with the results of the OAEI 2013 competitors. This approach is labeled StringsOpt, to indicate that

this is the optimal configuration of the framework for each alignment task. Note that StringAuto,

also listed in these tables, is a similar approach that will be discussed shortly.

Using only optimized string similarity metrics achieves an f-measure of .67 on the Conference

dataset, which makes it the fifth highest performer. The strings only approach also significantly

outperforms the baselines edna and StringEquiv, which are unrefined string metrics (StringEquiv

uses string equality and edna is an edit distance metric with a threshold of .81). For the Multi-

farm test set, only the results of metrics that have been designed to handle multilingual alignment

problems are shown. These results are divided into two groups: alignments of the same ontologies



2.4. STRING-BASED ONTOLOGY ALIGNMENT 44

in different languages (labeled “same”) and alignments of different ontologies in different languages

(labeled “dif”). The strings only approach is the second-best system in terms of f-measure on both

the same and different ontologies. This approach ties for fifth on the Anatomy test set.

It is evident that these results compare very well with the current state-of-the-art in ontology

alignment systems, but this is not an apples-to-apples comparison because this approach is

not generic (due to the hard-coded metrics based on the test set). The next step is to add some

means of selecting the appropriate string metrics and thresholds at runtime. Our goal is to develop

a method that is fully autonomous and does not rely on any training data. We have started out

with some basic observations based on the results we have gathered above:

• Precision does not vary widely among string similarity metrics for most standard ontologies.

• TF-IDF has high recall for most standard ontologies.

• When many entities in an ontology have labels that contain multiple words, it is best to use

set-based string similarity metrics. Soft Jaccard and Soft TF-IDF often perform particularly

well in these cases.

• Thresholds need to be lower when recall is of more concern than precision.

• Thresholds need to be lower when synonyms or translations are involved.

Based on these insights, we have developed an analysis module that runs before our main align-

ment algorithm to select the string metrics. This analysis module examines an ontology to find the

answers to three simple questions:

• Is the ontology in English?

• What is the average number of words per entity label (after tokenization)?

• Does the ontology contain embedded synonyms?

The implementation of the analysis module is straightforward. The language of the ontology

is determined by selecting ten entity labels and concatenating these into a single string, which is

then used in a call to the “translate” function of the Google Translate API with English as the

target language. This call is made with no value for the source language parameter, which causes

Google to return its best guess as to the source language along with the translation. If the language is

something other than English, the English translation is used in the remaining steps. The calculation

of the average number of words is straightforward. Synonym detection is done simply by checking
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the input files for mention of the word “synonym.” The analysis module only considers classes –

properties and instances are ignored.

Table 2.4 shows the average number of words per label for each dataset. From this we see that the

labels in biomedical ontologies are typically made up of more words than those in standard ontologies.

Also interesting is that the number of words per label is slightly greater for the multilingual version

of a test set than the same ontologies in English (i.e. the metrics are higher for Multifarm than for

Conference and for CIDX-to-Excel (ML) than for plain CIDX-to-Excel). This seems to be because

Google Translate sometimes produces a multi-word phrase instead of a single word when performing

translations.

Based on these results of the analysis module and whether precision or recall is currently of

interest in the alignment process, a string metric is chosen. This is currently done using a hard-

coded set of rules, but more research remains to be done in this area. When precision is the primary

concern, it doesn’t matter too much which metric we choose for most standard ontologies. We have

decided to use Jaro-Winkler. In cases where multiple words per label are involved, word ordering

often confuses the results. We therefore use the Soft Jaccard metric in these cases, with Levenstein as

the base metric. When recall is the primary focus, we use TF-IDF for ontologies with predominantly

one word per label and Soft TF-IDF for those with mostly multi-word labels. The thresholds used

are shown in the decision tree below. In general, if translations or synonyms are involved then lower

thresholds are appropriate. Note that these rules do not break cleanly among the different OAEI

test sets – they are based on underlying features of the ontologies to be matched.

• Precision

– Less than two words per label

Jaro-Winkler 1, 1

– Two or more words per label

∗ Synonyms

Soft Jaccard .2, .5 with Levenstein .9 base metric

∗ No synonyms

Soft Jaccard 1, 1 with Levenstein .8 base metric

• Recall

– Less than two words per label

TF-IDF .8, .8

– Two or more words per label
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∗ Synonyms

Soft TF-IDF .5, .8 with Jaro-Winkler .8 base metric

∗ Different Languages

Soft TF-IDF 0, .7 with Jaro-Winkler .9 base metric

∗ Other

Soft TF-IDF .8, .8 with Jaro-Winkler .8 base metric

We have added this automatic metric selection step to our approach. The results for this are

shown in tables 2.1, 2.2 and 2.3 under StringsAuto.7 This fully-automated string-based approach to

ontology alignment performs loses little performance when compared to the optimal version.

2.5 String Similarity Survey Summary

For some types of ontologies, the performance of different string similarity metrics varies greatly

in terms of both precision and recall. It is important to be cognizant of this when selecting a

string metric for a particular use. This chapter has established guidelines to assist researchers

in making this selection. In addition, we have found that many string preprocessing strategies

commonly used, such as stop word removal and word stemming are in many cases unhelpful and

in some cases counter-productive. We have presented data on which preprocessing strategies are

useful in particular situations. In addition, we have developed a basic system to automatically select

an appropriate string similarity metric for a given pair of ontologies at runtime. Because nearly

all ontology alignment algorithms make use of string similarity metrics, this work can similarly

be integrated into other existing alignment algorithms and is therefore directly relevant to many

researchers in this field. A conference paper based on this work has been published [Cheatham and

Hitzler 2013].

There are several paths for future work based on the idea of pushing string similarity metrics as

far as they can go in terms of ontology alignment. An important first step is to develop a string

similarity metric that performs better on properties. This will be the focus of the remainder of this

dissertation. However, in order to evaluate a property-centric string similarity metric we must use

the OAEI Conference test set, as that is the only widely-accepted benchmark that includes matches

between properties. There are some concerns related to the reference alignments in that benchmark

though. The next chapter will explain these concerns and propose a modified version of the reference

7The results for StringsAuto on the Multifarm track differ from what is reported on the 2013 OAEI website because

the workshop organizers were not able to connect to Google Translate when running their tests
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alignments. Chapter 4 will then outline a new string-based approach to property alignment and

evaluate its performance based on both the current and revised versions of the benchmark.



2.5. STRING SIMILARITY SURVEY SUMMARY 48

Metric Precision Recall F-measure

YAM++ 0.80 0.69 0.74

AML-bk 0.87 0.58 0.70

LogMap 0.80 0.59 0.68

AML 0.87 0.56 0.68

StringsOpt 0.85 0.55 0.67

ODGOMS1 2 0.74 0.60 0.66

StringsAuto 0.78 0.54 0.64

ServOMap 0.73 0.55 0.63

MapSSS 0.83 0.50 0.62

WeSeE-Match 0.85 0.47 0.61

ODGOMS1 1 0.76 0.51 0.61

HerTUDA 0.74 0.50 0.60

edna 0.76 0.49 0.60

WikiMatch 0.73 0.49 0.59

LogMapLite 0.73 0.50 0.59

IAMA 0.78 0.48 0.59

HotMatch 0.71 0.51 0.59

XMapSiG1 3 0.72 0.48 0.58

OntoK 0.77 0.47 0.58

CIDER CL 0.75 0.47 0.58

XMapGen1 4 0.68 0.49 0.57

SYNTHESIS 0.77 0.45 0.57

StringEquiv 0.80 0.43 0.56

RiMOM2013 0.59 0.49 0.54

XMapSiG1 4 0.80 0.40 0.53

XMapGen 0.58 0.45 0.51

CroMatcher 0.52 0.50 0.51

MaasMatch 0.28 0.55 0.37

Table 2.1: Results of the StringsOpt and StringsAuto alignment algorithms together with the com-

petitors from the OAEI 2013 competition on the Conference test set
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Metric Prec (dif) Fms (dif) Rec (dif) Prec (same) Fms (same) Rec (same)

CIDER CL 0.03 0.03 0.04 0.18 0.06 0.04

MapSSS 0.27 0.10 0.07 0.50 0.06 0.03

RiMOM2013 0.52 0.21 0.13 0.87 0.14 0.08

WeSeE-Match 0.22 0.15 0.12 0.56 0.16 0.09

WikiMatch 0.34 0.27 0.23 0.65 0.18 0.11

StringsAuto 0.64 0.39 0.28 0.93 0.26 0.15

StringsOpt 0.58 0.40 0.31 0.90 0.38 0.24

YAM++ 0.51 0.40 0.36 0.91 0.60 0.50

Table 2.2: Results of the StringsOpt and StringsAuto alignment algorithms together with the com-

petitors from the OAEI 2013 competition on the Multifarm test set
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Metric Precision Recall F-measure

AML-bk 0.95 0.93 0.94

GOMMA-bk 0.92 0.93 0.92

YAM++ 0.94 0.87 0.91

AML 0.95 0.83 0.89

LogMap 0.92 0.85 0.88

StringsOpt 0.88 0.87 0.88

GOMMA 0.96 0.80 0.87

StringsAuto 0.90 0.78 0.84

LogMapLite 0.96 0.73 0.83

MapSSS 0.90 0.77 0.83

ODGOMS 0.98 0.71 0.82

WikiMatch 0.99 0.67 0.80

HotMatch 0.98 0.64 0.77

StringEquiv 1.00 0.62 0.77

XMapSig 0.86 0.67 0.75

ServOMap 0.96 0.62 0.75

XMapGen 0.81 0.70 0.75

IAMA 1.00 0.56 0.71

CIDER CL 0.65 0.73 0.69

HerTUDA 0.69 0.67 0.68

WeSeE-Match 0.62 0.38 0.47

MaasMatch 0.36 0.48 0.41

Table 2.3: Results of the StringsOpt and StringsAuto alignment algorithms together with the com-

petitors from the OAEI 2013 competition on the Anatomy test set

Test set Words per label

Conference 1.85

CIDX-to-Excel 1.57

Multifarm 2.24

CIDX-to-Excel (ML) 1.61

Anatomy 2.64

Genes 4.11

Table 2.4: Comparison of datasets based on word length and number of words per label
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Property Alignment Benchmarks

The Ontology Alignment Evaluation Initiative (OAEI) is now a decade old, and it has been extremely

successful by many different measures: participation, accuracy, and the variety of problems handled

by alignment systems have all increased, while runtimes have decreased [Euzenat et al. 2011]. The

OAEI benchmarks have become the standard for evaluating general-purpose (and in some cases

domain-specific or problem-specific) alignment systems. In fact, you would be hard-pressed to

find a publication on an ontology alignment system in the last ten years that didn’t use these

benchmarks. They allow researchers to measure their system’s performance on different types of

matching problems in a way that is considered valid by most reviewers for publication. They also

enable comparison of a new system’s performance to that of other alignment systems without the

need to obtain and run the other systems.

As of 2013 the OAEI has eight different tracks, each designed to exercise a different aspect of

alignment systems.

• Benchmark: a synthetic benchmark to test general-purpose schema alignment by taking a root

ontology and systematically modifying it (e.g. by removing hierarchy information, misspelling

labels, etc.)

• Anatomy: tests alignment of two relatively small biomedical ontologies with a high degree of

subject overlap

• Conference: tests general-purpose schema alignment on a group of small real-world ontologies

describing the domain of conference organization

• Multifarm: a multi-lingual version of the Conference test set

• Library: tests alignments of two large real-world taxonomies related to the social science domain

51
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• Interactive: same as the Conference track but allows the alignment system to request input

from a user during the matching process

• Large Biomedical: tests the scalability of alignment systems by requiring alignment of three

biomedical ontologies: the Foundational Model of Anatomy (FMA), SNOMED CT, and the

National Cancer Institute Thesaurus (NCI), each of which contains tens of thousands of classes

• Instance Matching: a synthetic test set similar to the Benchmark track but focused on

mapping instance data rather than schemas

While these tracks do test alignment systems in a range of contexts in which they might be used,

there is not complete coverage of the current pressing issues in the field of ontology and linked data

alignment (as described in Chapter 1). In addition, the details of some of the test sets have led to

the incorporation of behaviors in many alignment systems that may not be optimal. For instance,

in several OAEI tracks an entity can be involved in at most one match, which may not be realistic

for some real-world datasets. Similarly, entities are only matched to other entities of the same type

in some tracks. It could be argued that this is not realistic in many cases, particularly when the

decision of when to represent something as an instance versus a class is not always clear cut.

Benchmarks in any field must be carefully chosen and revisited from time to time in order to

make sure they are pushing the field forwards rather than constraining innovation. Interesting

position papers on the qualities of a good benchmark include “Good Benchmarks are Hard to Find”

[Dekhtyar and Hayes 2006], “The Art of Building a Good Benchmark” [Huppler 2009], and “Using

Benchmarking to Advance Research” [Sim et al. 2003]. We believe that now is a good time to revisit

the most popular existing alignment benchmarks and to develop new benchmarks to drive innovation

in the field. In this chapter we begin this process by focusing on benchmarks related to property

alignment.

3.1 The OAEI Conference Track

The OAEI Conference track is the only non-synthetic test set for alignment systems that has reference

alignments containing matches between properties as well as classes. We therefore plan to use it to

evaluate our string-based property alignment system. However, we have some concerns related to the

reference alignments for this test set. In particular, we wonder about the ramifications on ontology

alignment system evaluation of the rather strong claims made by the reference alignments within

the Conference track, in terms of both the number of matches and the absolute certainty of each

match. Other researchers have also expressed some concern related to this test set. In particular,
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Ontology Classes Object Props Data Props Individuals

cmt 30 49 10 0

conference 60 46 18 0

confOf 39 13 23 0

edas 104 30 20 114

ekaw 74 33 0 0

iasted 141 38 3 4

sigkdd 50 17 11 0

median 60 33 11 0

total 558 259 96 118

Table 3.1: Characteristics of the ontologies in the OAEI Conference track

the developers of the CrowdMap alignment system indicated that some of the mappings from the

reference alignments seemed suspect, including WelcomeTalk = Welcome address, SocialEvent =

Social program and Attendee = Delegate (from the edas-iasted test case) [Sarasua et al. 2012].

As mentioned in Chapter 2, the complete Conference track consists of 16 ontologies covering the

domain of conference organization. These ontologies were created to reflect the material on confer-

ence websites, software tools used for organizing conferences, and the knowledge of people involved in

conference administration. Alignment systems are intended to generate alignments between each pair

of ontologies, for a total of 120 alignments. Each system’s output is evaluated against reference align-

ments in terms of precision, recall, and f-measure. Reference alignments are available for all pairwise

combinations of a subset of seven of the ontologies (resulting in 21 reference alignments). The intent

of the track is to provide real-world matching problems over ontologies covering the same domain.

More detail about the track can be found at the OAEI website: http://oaei.ontologymatching.org

Table 3.1 shows the number of different types of entities in each of the seven ontologies for

which reference alignments are available. While the number of properties is on par with the number

of classes in these ontologies (355 versus 558), the reference alignments contain significantly fewer

matches between properties than between classes (46 versus 259).

The ontologies that comprise the Conference track were developed in 2005 as part of the Onto-

Farm project [Šváb et al. 2005]. As explained in [Euzenat et al. 2011], the Conference track, together

with the Anatomy track, was introduced to provide more realism and difficulty than that offered by

the synthetically-generated Benchmark track. The history of the Conference track can be gleaned

from the OAEI website. The track has been a part of every OAEI since 2006. For the first two years,

reference alignments were unavailable and so alignments were evaluated using a combination of man-
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Figure 3.1: Number of participating systems throughout the history of the Conference track
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ual labeling by a group of experts (where each match was marked correct, incorrect, or unclear), data

mining and logical reasoning techniques. Interesting or unclear matches were discussed in “Consen-

sus Workshops.” In 2008 the track organizers created a reference alignment for all possible pairs of

five of the Conference ontologies. The reference alignments were based on the majority opinion of

three evaluators and were discussed during the consensus workshop that year. The confidence value

for all mappings in the reference alignments is 1.0. By 2009 the reference alignments contained all

pairs for seven ontologies and the consensus workshop had been phased out. Additionally, as the

number of participating systems grew (see Figure 3.1), the manual labeling was scaled back from one

of correct, incorrect, or unclear to simply correct or incorrect. Further, this labeling was performed

on the 100 matches in which the alignment systems had the highest confidence. By 2011 manual

labeling was eliminated entirely and evaluation relied completely on the reference alignments and

logical coherence. Each step in this history, while understandable due to the increasing number of

participating systems, resulted in a loss of nuance in evaluation.

3.1.1 Expert Consensus

Today the reference alignments for the Conference track are being used to report precision and recall

values for nearly all ontology alignment systems being developed. As was discussed in Chapter 1 (and
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shown in Figure 1.5), performance has improved significantly over the existence of the track. Also,

none of the matches in the reference alignments have been questioned in any of the ontology matching

workshop papers submitted by tool developers from 2006 through 2013, and in the last three years of

the ontology matching workshop none of the matches have come up for debate. However, it should

be noted that these alignments were developed by just three individuals (with support from the

consensus workshops). We wanted to determine the degree of consensus on these reference alignments

from a group of experts. Initially we collected all of the matches in the reference alignments together

with any match that was produced by at least one alignment system that competed in the 2013

OAEI. This resulted in 757 matches. We asked a group of people familiar with both ontologies

and academic conferences to indicate whether or not they agreed with each match. The experts

politely refused to opine on so many matches. In order to prune the question set, we adopted the

approach described in [Sarasua et al. 2012] by attempting to verify the reference alignments using the

consensus of existing alignment systems as a filter. In our case the alignment systems we consulted

were the 2013 OAEI competitors that performed better than the baseline string similarity metric

edna (edit distance). There were 15 such systems, which is a much larger sample than was used for

the filtering step in [Sarasua et al. 2012]. We considered those matches in the reference alignments

that at least one of the qualifying alignment systems disagreed on. This resulted in 168 matches

that were presented to the experts for validation. The 141 matches that all of the alignment systems

agreed upon were simple string equivalences. In fact, the Conference track seems quite challenging

for current alignment systems, most of which are unable to identify the large majority of matches in

the reference alignments that do not involve equivalent or nearly-equivalent strings. Additionally,

there does not seem to be evidence of widespread overfitting despite the reference alignments being

made available over five years ago. This is similar to the lack of overfitting discovered in an analysis

of results on the Benchmark track after it had been available for a similar amount of time [Rosoiu

et al. 2011], and encouraging for the field of ontology alignment.

The experts were given a link to download a Java program and accompanying data files. See

Figure 3.2 for a screenshot of the program during execution. Note that the entity labels from each

match were stripped of the URL, tokenized, and put into lower case. Additionally, in order to provide

the experts with some context for the labels, all of the axioms in the ontologies were translated to

English using Open University’s SWAT Natural Language Tools.1 Any axioms related to either of

the entities in the match were displayed to the users. Users were then asked a question of the form

“Does labelA mean the same thing as labelB?” and prompted to choose a yes or no answer.

We received input from 13 experts. Using a majority rules approach, the experts agreed with

1http://swat.open.ac.uk/tools/
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Figure 3.2: Sample matching question presented to users

106 of the 168 matches. Assuming that the experts would also have concurred on all of the 141

matches that were not asked about because all of the alignment systems agreed upon them and

that they would not have identified any additional mappings not in the reference alignments, their

precision is 1.0. The second part of this assumption is admittedly more of a leap, but is somewhat

reasonable considering that researchers are encouraged to bring matches that they believe are mis-

takenly categorized as false positives to the attention of the conference organizers, but no one has

done so for over three years. Under these assumptions, the expert recall is 0.80 and their f-measure

is 0.89. The f-measure of the individual experts ranges from 0.78 to 0.95 when computed against the

OAEI reference alignment. This compares to an f-measure of 0.74 for the top-performing automated

alignment system in 2013, while the median of this group of systems was 0.64.

One of the main things that stands out from the results of this experiment is the lack of consensus

among the experts on these matches. For each match, we consider the certainty of our expert group

as the difference between the percentage of people who answered “yes” and the percentage who

answered “no.” The average certainty over all matches was 43%, with a variance of 9%. There was

total agreement on just 9 matches, while the experts were split 7-6 or 6-7 on 40 matches. Further,

6 of the 9 matches with complete consensus were exact or near lexical matches that were missed by

one or more of the alignment systems for some reason (see Table 3.2). The experts deemed all of

these matches to be valid – there were no cases in which the experts unanimously disagreed with a
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Table 3.2: Matches on which all experts agreed

Entity 1 Entity 2 Test Name

email E-mail cmt-sigkdd

has an email hasEmail conference-confOf

hasSurname hasLastName confOf-edas

has a review hasReview conference-ekaw

hasAuthor writtenBy cmt-confOf

hasFirstName hasFirstName confOf-edas

has the last name hasLastName conference-edas

CoffeeBreak Coffee break edas-iasted

isReviewing reviewerOfPaper edas-ekaw

match.

It is also instructive to consider the degree of consensus on matches involving properties versus

those involving classes. This information is shown in Table 3.3. Recall that to avoid requiring

the experts to opine on an inordinate number of matches, the questions asked were limited to

matches from the reference alignment on which at least one reasonably-performing alignment system

disagreed. This was the case for all property matches, but for only about half of the class matches.

The top half of Table 3.3 shows the results for only those matches that the experts were asked

about, while the bottom half shows the same data for the complete reference alignments under the

assumption that the experts would not have disagreed with any of the uncontroversial matches. We

see that there was significantly more agreement among the experts on the property matches they

were asked about than on the class matches. This is further indication that, while current alignment

systems are reasonably proficient at aligning classes, many are stymied by rather straightforward

matches between properties. Considering the reference alignments in their entirety, there was little

difference between the average conference values for classes and properties.

3.1.2 Conference v2.0

In 2011 the developers of MapPSO pointed out that in the reference alignment for the Benchmark

track (a separate test set offered alongside the Conference track) there were two matches resulting

from the synthetic test set generation process that could not possibly be detected unequivocally

from an information theoretic perspective. They argue that since neither humans nor machines

could resolve these mappings, the confidence should be set at 50% for each [Bock et al. 2011]. We
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Table 3.3: Expert consensus on classes versus properties

Controversial matches

Average class confidence 0.54

Average property confidence 0.75

Classes with total confidence 1 (1%)

Properties with total confidence 8 (17%)

Classes with total confusion 35 (29%)

Properties with total confusion 5 (11%)

All matches

Average class confidence 0.78

Average property confidence 0.75

Classes with total confidence 138 (53%)

Properties with total confidence 8 (17%)

Classes with total confusion 35 (14%)

Properties with total confusion 5 (11%)

claim that our results on the experiment discussed in the previous section show that a similar issue

is occurring with the Conference track. It is less than ideal to evaluate automated alignment systems

against a reference alignment with confidence values for all matches equal to 1.0 when the degree of

consensus among human experts is actually quite different. Therefore, we have established another

version of the Conference track reference alignments which has confidence values that reflect the

percentage of agreement for each match among our group of experts. This alignment is available in

the Alignment API format from http://www.michellecheatham.com/files/ConferenceV2.zip.

The first six columns of Table 3.4 show the results of the 2013 alignment systems that performed

better than the string edit distance baseline on both the original (v1) and our revised (v2) versions

of this benchmark. These columns show the traditional precision, recall, and f-measure metrics.

In this evaluation approach, matches in the new version of the benchmark with a confidence of

0.5 or greater are considered fully correct and those with a confidence less than 0.5 are considered

completely invalid. Thresholds for the matchers’ results were set at a value that optimized f-measure

for each system, in accordance with the evaluation procedure used by the OAEI. A hypothetical

alignment system that perfectly agreed with the current version of the Conference track reference

alignments would have a precision of 0.8 and a recall of 1.0 on version 2.0, yielding an f-measure of

0.89. All of the qualifying 2013 alignment systems saw an increase in traditional f-measure. In fact,



3.1. THE OAEI CONFERENCE TRACK 59

Table 3.4: Results of qualifying 2013 OAEI alignment systems on the traditional and proposed

revision of the Conference track

System Prv1 Recv1 Fmv1 Prv2 Recv2 Fmv2 Prcont Reccont Fmcont

AML 0.87 0.56 0.68 0.83 0.67 0.74 0.88 0.65 0.75

AMLback 0.87 0.58 0.70 0.81 0.68 0.74 0.88 0.68 0.76

CIDER CL 0.74 0.49 0.59 0.74 0.61 0.67 0.75 0.60 0.67

HerTUDA 0.74 0.50 0.60 0.74 0.63 0.68 0.75 0.66 0.70

HotMatch 0.71 0.51 0.60 0.71 0.64 0.67 0.71 0.66 0.68

IAMA 0.78 0.48 0.59 0.78 0.60 0.68 0.78 0.64 0.70

LogMap 0.80 0.59 0.68 0.76 0.70 0.73 0.83 0.56 0.67

MapSSS 0.74 0.50 0.60 0.73 0.62 0.67 0.72 0.64 0.68

ODGOMS 0.76 0.51 0.61 0.76 0.64 0.70 0.78 0.67 0.72

ODGOMS1 2 0.74 0.60 0.66 0.70 0.72 0.71 0.71 0.73 0.72

ServOMap 0.72 0.55 0.63 0.68 0.65 0.67 0.71 0.67 0.69

StringsAuto 0.71 0.54 0.61 0.68 0.65 0.66 0.67 0.67 0.67

WeSeEMatch 0.85 0.47 0.60 0.85 0.58 0.69 0.84 0.61 0.70

WikiMatch 0.73 0.49 0.59 0.73 0.62 0.67 0.73 0.65 0.69

YAM++ 0.80 0.69 0.74 0.73 0.79 0.76 0.80 0.54 0.65

six systems saw a double-digit percentage improvement. In most cases precision remained constant

or dropped slightly while recall increased significantly (see Figure 3.3). This is expected because no

new matches were added to the reference alignments, but those that the experts did not agree on

were removed. If we rank the systems in terms of f-measure, we see that the top five systems remain

consistent across both versions. Also interesting to note, the rank of StringsAuto, the authors’ own

automated alignment system (see Chapter 2), dropped from the middle of the pack to next-to-last

when evaluated under this version of the benchmark. This was by far the largest drop in rank of

any system. The relative success of this approach on the existing version of the Conference track

may indicate a bias towards exact or near-exact lexical matches in the benchmark.

Intuitively, it seems desirable to penalize an alignment system more if it fails to identify a match

on which 90% of the experts agree than one on which only 51% of them agree. To do this, we evaluate

the same group of 2013 systems based on modified precision and recall metrics that consider the

confidence values of the matches, i.e., precision and recall metrics which are continuous versions of

the traditional, discrete ones. Let us briefly reflect on how to do this. In order to follow the intuition
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Figure 3.3: Percent difference in traditional precision, recall, and f-measure between the current and

proposed revision of the Conference track
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of the discrete (Boolean, two-valued) case, we would like to retain the usual definitions of precision,

recall, and f-measure in terms of the numbers of true positives (tp), false positives (fp), and false

negatives (fn), which are as follows.

Precision =
tp

tp + fp

Recall =
tp

tp + fn

F-measure =
2 · tp

2 · tp + fp + fn
=

2 · Precision · Recall

Precision + Recall

It remains to obtain tp, fp, and fn for the case where both the benchmark and the results of the

system to be evaluated are expressed in terms of confidence values for each alignment.

Given a potential match i (say, between “conference participant” and “participant”), let b(i) ∈

[0, 1] denote the confidence value assigned to this match by the benchmark, and let s(i) ∈ [0, 1]

denote the confidence value assigned to this match by the system to be evaluated. Interpreting b(i)

and s(i) as certainty values in the sense of fuzzy set theory [Nguyen and Walker 2005] – which is
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reasonable from our perspective – we thus arrive at the formula

tp =
∑
i∈I

T (b(i), s(i)),

where T is some t-norm, i.e., a continuous-valued version of logical conjunction. The most obvious

choices for the t-norm are arguably the product t-norm and the Gödel (or minimum) t-norm – it

actually turns out that there is not much difference between these two with respect to our analysis. In

fact the effect is within rounding error in most cases and maximally 3% (resulting in, e.g., f-measure

of .65 rather than .67). In the following we will thus stick with the product t-norm.2

From this perspective, we thus arrive at the following.

tp =
∑
i∈I

b(i) · s(i)

fp =
∑

i∈{j∈I|b(j)<s(j)}

|b(i)− s(i)|

fn =
∑

i∈{j∈I|b(j)>s(j)}

|b(i)− s(i)|

Note that all three revert to their original definition in a discrete (Boolean) setting in which only

confidence values of 0 and 1 are used.

With these definitions, we thus obtain the following.

Precision =
tp

tp + fp
=

∑
i∈I b(i) · s(i)∑

i∈I b(i) · s(i) +
∑

i∈{j∈I|b(j)<s(j)} |b(i)− s(i)|

Recall =
tp

tp + fn
=

∑
i∈I b(i) · s(i)∑

i∈I b(i) · s(i) +
∑

i∈{j∈I|b(j)>s(j)} |b(i)− s(i)|

F-measure =
2 · tp

2 · tp + fp + fn
=

2 ·
∑

i∈I b(i) · s(i)
2 ·

∑
i∈I b(i) · s(i) +

∑
i∈I |b(i)− s(i)|

Note that the f-measure is also rather intuitive: It is the sum
∑

i∈I |b(i)− s(i)| of all differences in

confidence, normalized (using tp) to a value between 0 and 1. The value for (fp + fn) is captured in

this sum of differences.

A Java class that computes these metrics is included with the downloadable version of the

reference alignments, together with a small driver program illustrating its use.

The last three columns of Table 3.4 show the results of the alignment systems when evaluated

with these metrics. The continuous precision for most systems was slightly higher than that of the

traditional precision metric on Conference v2. The average increase was about 3%. The continuous

recall measures were also slightly higher (generally 3-5%) than the traditional version. Half of the

alignment systems evaluated here created alignments that consisted entirely or predominantly of

2Note that the product t-norm also lends itself to a probabilistic interpretation.



3.1. THE OAEI CONFERENCE TRACK 62

matches with a confidence at or very near 1.0. If confidence values were stressed more as part of

the alignment system evaluation, we would likely see larger differences between the continuous and

discrete (traditional) precision and recall measures.

An interesting side note is that this method of evaluation does not involve setting any thresholds,

either for the reference alignment or the matching systems. We argue that this is an improvement

because it eliminates the need to artificially discretize a similarity assessment that is inherently

continuous. It also considerably speeds up the evaluation process.

The performance of two systems in particular looks very different when these confidence-conscious

versions of precision and recall are used to evaluate them. LogMap and YAM++ move from the top

three to the bottom three systems when ranked by f-measure. These systems assign relatively low

confidence values (e.g. 0.5-0.75) for many matches even when the labels of the entities involved are

identical, which apparently does not correspond well to human evaluation of the match quality.

3.1.3 Crowdsourcing Alignment Benchmarks

While it is clearly valuable to have ontology alignment benchmarks that reflect the consensus opinions

of a large number of experts, it is very difficult to persuade such experts to take the time necessary

to create the required reference alignments. What if we could leverage the so-called “Wisdom of

Crowds” for this task instead? We have investigated the use of Amazon’s Mechanical Turk webservice

for this purpose.

Amazon publicly released Mechanical Turk in 2005. It is named for a famous chess-playing

“automaton” from the 1700s. The automaton actually concealed a person inside who manipulated

magnets to move the chess pieces. Similarly, Amazon’s Mechanical Turk is based on the idea that

some tasks remain very difficult for computers but are easily solved by humans. Mechanical Turk

therefore provides a way to submit these types of problems, either through a web interface or

programmatically using a variety of programming languages, to Amazon’s servers, where anyone

with an account can solve the problem. In general, this person is compensated with a small sum of

money, often just a cent or two. The solution can then be easily retrieved for further processing, again

either manually or programmatically. While there are few restrictions on the type of problems that

can be submitted to Mechanical Turk, they tend towards relatively simple tasks such as identifying

the subject of an image, retrieving the contents of receipts, business cards, old books, or other

documents that are challenging for OCR software, transcribing the contents of audio recordings, etc.

As of 2010, 47% of Mechanical Turk workers, called “Turkers”, were from the United States while

34% were from India. Most are relatively young (born after 1980), female, and have a Bachelors

degree [Ipeirotis 2010]. It is possible for individuals asking questions via Mechanical Turk (called
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Requesters) to impose qualifications on the Turkers who answer them. For instance, Requesters can

specify that a person lives in a particular geographic area, has answered a given number of previous

questions, has had a given percentage of their previous answers judged to be of high quality, or pass

a test provided by the Requester. In addition, Requesters have the option to refuse to pay a Turker

if they judge the Turker’s answers to be of poor quality.

We used Mechanical Turk to ask 40 individuals their opinion on the same 168 matches presented

to the group of experts. Each question was formatted in the same way as Figure 3.2, with the

exception of the Next button. The questions were presented in 21 batches with 8 questions per

batch. Respondents earned 16 cents for each batch and were paid regardless of the specific answers

they gave. No qualifications were placed on who could work on the tasks.

We created alignments for the pairs of ontologies in the Conference track based on the results from

the 40 Turkers. The confidence of each match was set to the percentage of Turkers who indicated

the match was valid. These alignments were then evaluated against both the current and proposed

revisions of the reference alignments. The results are shown in Table 3.5. The first line in the

table shows that the recall is somewhat low on the current version of the Conference track. This is

arguably an indication that the current version attempts to map too much. Remember from Section

3.1.2 that the performance of the experts, when taken as a group, was nearly identical (their precision

was 1.0 and their recall was 0.80, yielding an f-measure of 0.89). Though further experimentation

is necessary for confirmation, these results support the hypothesis that using Mechanical Turk to

validate existing reference alignments yields essentially the same results as those produced by experts.

Moreover, the third row in Table 3.5 indicates that the Turkers don’t just agree with the experts

in a binary context – the degree of consensus among them also closely corresponded to that of

the experts, resulting in very similar confidence values. These results are quite encouraging – for

$134.40 we generated a high-quality reference alignment in less than two days (over Easter weekend,

no less). However, they may be somewhat overly optimistic, because the results were calculated on

the reference alignments in their entirety, but 141 of the 309 matches in those alignments were trivial

and therefore not included in our survey. If we compute the same metrics but restrict them to the

subset of matches on which the Turkers and experts were surveyed, we arrive at the values in the

last row of Table 3.5. These results are still quite strong, and we feel that this is a viable method of

benchmark generation. This belief is supported by the fact that when the performance of the top

alignment systems from the 2013 OAEI on the expert-generated reference alignments is compared

to what it would be if the reference alignments were instead based solely on the results from the

Turkers, there is little practical difference between the two. None of the continuous precision, recall,

or f-measures differs by more than 0.02, and the vast majority are within 0.01.
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Table 3.5: Performance of the Mechanical Turk-generated alignments on the traditional and proposed

revision of the Conference track

Test Version Prec. Recall F-meas.

Conference v1 1.00 0.81 0.90

Conference v2 (discrete) 0.88 0.89 0.88

Conference v2 (continuous) 0.98 0.96 0.97

Conference v2 subset (continuous) 0.94 0.88 0.91

Other researchers have mentioned a problem with spammers on Mechanical Turk, who will answer

questions randomly or with some other time-saving strategy in order to maximize their profit-to-

effort ratio [Sarasua et al. 2012]. While we did not have this issue during our experiments, it might

be possible to further optimize the crowdsourcing of reference alignments by reducing the number

of Turkers recruited for the effort. It stands to reason that the fewer inputs that are collected,

the higher quality each one needs to be in order to reap reasonable results. Amazon’s Mechanical

Turk Requester Best Practices Guide3 suggests several potential ways to find high-quality Turkers,

including using qualification tests or “golden questions.” In an effort to identify high-performing

individuals, we implemented the golden question approach, in which a Turker’s answers are validated

against a set of questions for which the answers are obvious. In this case, there were nine questions

on which all of the experts agreed. There were 10 Turkers who agreed on either eight or nine of these

golden questions. We call these respondents “Super Turkers.” We created alignments using only the

results of these Super Turkers and evaluated them with respect to the expert-generated reference

alignments. If we evaluate their results over the whole of the Conference v2 reference alignments,

we arrive at essentially the same result we achieved using the 40 regular Turkers. However, if we

evaluate the Super Turker results over the subset of unclear matches, the performance is slightly

worse that that of the entire group. Actually, it is roughly the same as the performance of a sample

of the same size drawn randomly (see Figure 3.4, which shows the continuous precision, recall, and

f-measure for varying numbers of randomly selected Turkers). So it does seem that the wisdom lies

in the crowd rather than a few individuals in this instance.

The Java code to interact with Mechanical Turk and generate the reference alignments is available

at http://www.michellecheatham.com/files/MTurk.zip. The program can be run from the command

line and requires the following input:

• The ontologies to be aligned, in OWL or RDF format.

3http://mturkpublic.s3.amazonaws.com/docs/MTURK BP.pdf
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Figure 3.4: Performance of varying-sized groups of Turkers randomly selected from the responses
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• A text file specifying the particular matches to be verified. One option would be to use one or

more automated alignment algorithms to arrive at a set of possibilities.

• A text file containing the English translations of all of the axioms in both ontologies. This can

be produced using the tool at http://swat.open.ac.uk/tools/.

• Two Mechanical Turk properties files containing information such as a Requester access key,

the payment amount per question, and any qualifications required for Turkers to accept the

assignments.

A Mechanical Turk Requester account with sufficient funds is required to submit questions to

Amazon. There is a sandbox available from Amazon to test the assignments before submitting them.

There has been some related work involving using crowdsourcing for tasks related to ontologies

that should be noted here. A group of researchers from Stanford University has recently pub-

lished several papers on using Mechanical Turk to verify relationships within biomedical ontologies

[Mortensen et al. 2013a; Noy et al. 2013; Mortensen et al. 2013b; Mortensen 2013]. This is clearly

closely related to the work presented in this section, though our focus on generating reference align-

ments between pairs of ontologies and the potentially more “approachable” domain of conference
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organization caused us to have slightly different experiences. In particular, when relationships to be

verified come from separate ontologies rather than from within a single one, ontology design decisions

can confuse this issue. Also, precise vocabulary such as that found in biomedical ontologies is less

subject to different interpretations. The end result was that we did not need to qualify the Turkers

who worked on our tasks in order to obtain good results as the group from Stanford did, but it was

harder to judge the accuracy of the crowdsourced results due to the lack of strong consensus among

both experts and Turkers.

There is also an alignment system called CrowdMap that uses Mechanical Turk to generate

alignments between two ontologies [Sarasua et al. 2012]. The focus in that work is on generating

alignments from scratch, which are then evaluated against the existing OAEI benchmarks (including

the Conference track). While that is a topic we are interested in as well, we view the work presented

here as complementary since our current goal is to establish a new version of the Conference track

that more accurately reflects expert opinion.

There has also been research into using crowdsourcing in other contexts that bear some simi-

larity to ontology alignment, such as natural language processing, information retrieval, and audio

processing [Wichmann et al. 2011; Ul Hassan et al. 2012].

3.2 DBPedia and YAGO

In addition to the OAEI Conference test set, we would also like to analyze the performance of our pro-

posed string-based property alignment system on another real-world alignment task. For this we have

chosen DBPedia and YAGO. DBPedia is a linked data version of the information in Wikipedia. The

dataset is currently on version 3.9 and can be downloaded at http://wiki.dbpedia.org/Downloads39.

The YAGO knowledge base has been automatically extracted from Wikipedia, WordNet, and GeoN-

ames by researchers at the Max Planck Institute for Computer Science. It can be downloaded from

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/

Both DBPedia and YAGO contain millions of instances and thousands of schema-level entities

(see Table 3.6). We are specifically interested in aligning the properties of these two datasets, so

we have extracted a cohesive subset of each one that will allow us to do this without requiring an

inordinately long runtime. This was done using the following procedure:

1. For each property in YAGO, randomly choose five facts that involve the property. For properties

with less than five facts, use all that are available.

2. Include the classes for the type of every instance mentioned in the facts from step 1.
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Table 3.6: Characteristics of the DBPedia and YAGO samples

Dataset DBPedia YAGO

Classes 617 10962

Object Properties 1046 85

Data Properties 1407 37

Named Individuals 8685 1680

Datatypes 23 23

Annotations 77 125

Total Entities 11855 12912

3. Randomly select and add up to five other facts related to the instances from step 1.

4. Repeat step 2 for any additional instances added during step 3.

5. Compute the “closure” of this set of entities by recursively retrieving all schema-related axioms

related to any entity within our sample.

The procedure for creating the DBPedia sample was analogous, except that instead of randomly

choosing the facts in step 1, we selected facts with the same instances as our YAGO sample when

available. This is possible because, since DBPedia and YAGO both represent information from

Wikipedia, there is error-free mapping of instances that point to the same Wikipedia page. When

there were no matching YAGO instances for the facts related to a particular DBPedia property, we

reverted to randomly choosing facts. The characteristics of these dataset samples are shown in table

3.6.

This dataset sample may be of use to other researchers, so we have made it publicly available

at http://www.michellecheatham.com/files/dbpedia-yago.zip. It should be noted that DBPedia and

YAGO are much larger and have more of a “real-world” character than the ontologies in the OAEI

Conference track. For instance, many properties defined in the ontologies are never used or are

incompletely defined (e.g. missing domain or range definitions). Also, the definitions of some prop-

erties are spread across a datatype property, which specifies the range, and an annotation property,

which specifies the domain (see below). Using domain axioms in conjunction with annotation prop-

erties is forbidden in the W3C Recommendation for OWL.4 Also, some of the properties appear to

be used inconsistently, or at least more broadly than they are defined. For instance, in DBPedia we

see that the instance HAL 9000 has a gender property with a value of male and that Eaglet (Alice’s

4http://www.w3.org/TR/owl-ref/#Annotations
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Adventures in Wonderland) has a gender value female. In some cases the gender property is used

differently, however. For instance, the instance Alexander has a gender property value of Alexandra,

and the value for Maine North High School is mixed-sex education. While these issues can be a pain

to work with, they are realistic concerns that ontology alignment systems will need to face for many

application scenarios.

<!-- http://dbpedia.org/ontology/mayorFunction -->

<owl:DatatypeProperty

rdf:about="http://dbpedia.org/ontology/mayorFunction">

<rdfs:label xml:lang="en">mayor function of a switzerland

settlement</rdfs:label>

<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:AnnotationProperty rdf:about="http://dbpedia.org/ontology/mayorFunction">

<rdfs:label xml:lang="en">mayor function of a switzerland

settlement</rdfs:label>

<rdfs:domain rdf:resource=

"http://dbpedia.org/ontology/SwitzerlandSettlement"/>

</owl:AnnotationProperty>

There is currently no curated alignment of the properties in the DBPedia and YAGO datasets.

We would like to use the crowdsourcing approach outlined in Section 3.1.3 to create a complete

reference alignment for the properties in these two datasets. It is not realistic to crowdsource opinion

on all possible pairs of properties, however. A set of potential mappings is needed to bootstrap the

crowdsourcing effort. Unfortunately, not many alignment systems have made results available for

this pair of ontologies. The developers of the PARIS alignment system are the exception – they

have produced and made public a set of subsumption relationships between properties [Suchanek

et al. 2011a]. We can consider the cases where subsumption relations between two properties exist in

both directions as indicative of an equivalence relation. These matches are shown in Table 3.7. We

will use these matches, together with those produced by a basic string similarity metric and by our

string-based property matcher described in the next chapter to begin the process of crowdsourcing

a viable reference alignment. Due to the limited number of alignment approaches providing the

potential matches to verify, this method will allow us to assess precision reasonably well but recall
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Table 3.7: Equivalence mappings between DBPedia and YAGO properties as identified by the PARIS

alignment system

DBPedia YAGO

spouse isMarriedTo

knownFor isKnownFor

place happenedIn

residence livesIn

deathDate diedOnDate

currency hasCurrency

almaMater graduatedFrom

isbn hasISBN

birthDate wasBornOnDate

doctoralAdvisor hasAcademicAdvisor

motto hasMotto

capital hasCapital

numberOfStaff hasNumberOfPeople

long5 hasLongitude

lat hasLatitude

values are likely to be less accurate. While less than ideal, this is a common method of evaluation

in the absence of an established reference alignment [Madhavan et al. 2001; Suchanek et al. 2011a;

Ritze et al. 2009].



4

String-based Property Alignment

We have already seen indications that property alignment is difficult. Section 2.3.2.3 showed that

traditional string similarity metrics perform much worse on properties than on classes. Furthermore,

section 3.1.1 explains that current state-of-the-art alignment systems agree on many class equivalence

relations in the conference test set but on no property equivalences. We will begin our development

of a property-specific alignment system by further analyzing the performance of current systems

with respect to properties. Table 4.1 shows the results of the top 2013 OAEI competitors on the

Conference track, broken down into classes and properties1. The average f-measure for classes is

more than three times that for properties.

Tables 4.2, 4.3, and 4.4 present the most common correct and incorrect property matches iden-

tified by the participants in the 2013 OAEI, along with the valid property matches that were most

frequently omitted by those systems. The frequency column in these tables indicates the number of

alignment systems out of the 15 qualifying systems that produced each match. The last column in

Tables 4.2 and 4.4 shows the degree of confidence in each match. This value is based on the results of

the survey of experts described in Chapter 3. Table 4.3 does not have this column because our survey

focused on verifying the matches in the existing reference alignments for the Conference track, rather

than attempting to identify missing matches. Table 4.2 shows that the equivalent properties that

were most frequently correctly identified all have very high string similarity. Unfortunately, Table

4.3 shows that high string similarity is also the defining characteristic of the most common false

positives. It may seem surprising that some of the matches in this table are not valid. The OAEI

reference alignments are strongly biased towards achieving a logically consistent merged ontology.

There are several reasons these matches may have been omitted from the reference alignments for the

OAEI. In some cases the domain or range of the matched properties indicate that they are not being

used in the same way. For instance, the domain of cmt:name is the union of Person and Conference

1MapSSS and StringsAuto do not attempt to align properties
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System Class Prec Class Rec Class Fms Prop Prec Prop Rec Prop Fms

AML 0.86 0.62 0.72 1.00 0.20 0.33

AMLback 0.86 0.64 0.73 1.00 0.24 0.39

CIDER CL 0.46 0.59 0.52 0.07 0.22 0.11

HerTUDA 0.84 0.56 0.67 0.26 0.20 0.23

HotMatch 0.81 0.57 0.67 0.24 0.20 0.22

IAMA 0.87 0.55 0.67 0.14 0.07 0.09

LogMap 0.82 0.65 0.73 0.62 0.28 0.39

MapSSS 0.74 0.59 0.66 0.00 0.00 0.00

ODGOMS 0.87 0.55 0.67 0.32 0.26 0.29

ODGOMS1 2 0.81 0.66 0.73 0.32 0.26 0.29

ServOMap v104 0.74 0.65 0.69 0.00 0.00 0.00

StringsAuto 0.71 0.63 0.67 0.00 0.00 0.00

WeSeEMatch 0.85 0.54 0.66 0.50 0.02 0.04

WikiMatch 0.84 0.54 0.66 0.26 0.22 0.24

YAM++ 0.82 0.71 0.76 0.68 0.57 0.62

Average 0.79 0.60 0.68 0.36 0.18 0.21

Table 4.1: Performance of the top 2013 OAEI competitors on classes versus properties

whereas the domain of sigkdd:Name is only Person and a separate property, Name of conference,

is used to represent a conference’s name. Presumably in other cases the match may make sense in

isolation but would lead the merged ontology to be logically inconsistent. It is difficult to identify

these cases, however. It would be helpful if the developers of the original Conference track reference

alignments made them available in some form. Finally, we see in Table 4.4 that for many of the most

frequently missed matches, humans have a difficult time agreeing. Out of the 31 matches, expert

confidence was lower than 55 percent for 11 of them. The properties involved in these false negatives

have a much lower string similarity, for instance cmt:hasBeenAssigned and ekaw:ReviewerOfPaper.

In many of these cases, the domain and range do have strong syntactic similarity however, e.g.

Reviewer and Paper for hasBeenAssigned and Possible Reviewer and Paper for reviewerOfPaper.

Further, there were some quite frequently missed equivalent properties that have strong clues in the

labels themselves, such as cmt:writePaper and confOf:writes. Of the 31 common false negatives in

Table 4.4, 13 have noticeable string similarity.

We have established that aligning properties is quite difficult, both for string similarity metrics

alone and for the current top-performing alignment systems. In this chapter we will attempt to
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Property 1 Property 2 Freq. Conf.

cmt:email confOf:hasEmail 11 0.92

confOf:hasFirstName edas:hasFirstName 11 1.0

conference:has an email confOf:hasEmail 9 1.0

cmt:email conference:has an email 9 0.85

conference:has the last name edas:hasLastName 9 1.0

conference:has a review ekaw:hasReview 9 1.0

conference:has the first name edas:hasFirstName 9 0.92

conference:has the first name confOf:hasFirstName 9 0.92

Table 4.2: Most common correct property matches identified by alignment systems in the 2013 OAEI

develop a string-based approach that exhibits better performance on property alignment and evaluate

its performance.

4.1 Related Work

Empirical analysis of existing ontologies has shown that different naming conventions are used for

different entity types. For instance, empirical analysis of existing ontologies has shown that ob-

ject properties generally begin with a verb (e.g. attends, employs) or end with a preposition (e.g.

friendOf, componentFor) while datatype properties are usually nouns (e.g. value, id, etc.). Addi-

tionally, the names of inverse properties were found to commonly follow one of two patterns: (1)

active and passive forms of the same verb (e.g. wrote and writtenBy) or same noun phrase packed

in auxiliary terms (e.g. memberOf and hasMember) [Svátek et al. 2009]. These different naming

conventions may be one reason for the generally poor performance of string similarity metrics on

properties.

In 2002 Melnik and his colleagues developed a strategy called “similarity flooding” to improve

the performance of alignment systems. The general idea is that an initial pass is made through the

datasets to establish a set of high precision anchor mappings, such as exact string matches. Then

similarity values are propagated to adjacent nodes. If the similarity value of two nodes reaches a

threshold, they are considered equivalent. The algorithm iterates until a fixed point is reached [Mel-

nik et al. 2002]. This technique may improve the performance on property alignment by leveraging

the increased accuracy of class and instance alignment. Similarity flooding in somewhat similar to

extensional alignment techniques, in which two properties are judged more similar if the instances

related by those properties within a dataset are similar [Gunaratna et al. 2013].
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Property 1 Property 2 Freq.

iasted:pay sigkdd:pay 9

confOf:hasEmail edas:hasEmail 9

cmt:email edas:hasEmail 8

cmt:name sigkdd:Name 8

confOf:hasPhone edas:hasPhone 8

confOf:hasStreet edas:hasStreet 7

confOf:hasPostalCode edas:hasPostalCode 7

iasted:obtain sigkdd:obtain 7

confOf:hasTopic edas:hasTopic 7

conference:has an email edas:hasEmail 7

cmt:writtenBy confOf:writtenBy 7

Table 4.3: Most common incorrect property matches identified by alignment systems in the 2013

OAEI

An ontology-centric version of the basic similarity flooding technique was first employed in Ri-

MOM and subsequently adopted by many other ontology alignment systems. Rather than propa-

gating similarity values to all neighbors in a graph structure, this approach considered sub-concepts,

siblings, and properties for classes and sub-properties, range, and domain for properties [Li et al.

2009]. Suchanek et. al. recently applied this ontology-oriented similarity flooding approach in their

PARIS alignment system, which identifies both equivalence and subsumption relations for classes

and properties [Suchanek et al. 2011a]. They found that while class alignments didn’t do much to

facilitate alignment of properties or instances, there was significant interplay between the latter two.

This was particularly true for functional or nearly functional properties, in which any domain value

maps to only one range value.

There have been several attempts to modify the standard similarity flooding approach to further

improve the performance on property matching. For example, comparison of instance data and

datatype property range values can be improved by using different similarity metrics for strings,

dates, integers, etc. [Zhao and Ichise 2013]. Further, in deference to the difficulty of matching

properties, it is possible to propagate a fraction of the normal similarity values when adjacent

properties are compatible rather than definite matches. This is the approach taken in [Pernelle

et al. 2013] where compatibility for properties is defined as those with domains and ranges that are

either the same or subtypes of one another.

Another particularly problematic aspect for property matching is the variety of design decisions
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made when an ontology is created. For instance, some ontologies are class-centric while others are

property-centric (e.g. SeasonTicketHolder versus holdsSeasonTicket) [Šváb 2007]. Intuitively we

would like to say that if two ontologies had these entities, there should be some sort of mapping

between them. Other ontology design decisions that impact property matching are how to handle

part-whole relationships and when to reify properties [Noy and Hafner 1997]. Additionally, tax-

onomies of properties are much less common than those of classes [Svátek et al. 2009; Noy and

Hafner 1997]. There has been some discussion in the literature of handling differences in design

philosophy through ontology transformation, in which design patterns are recognized and translated

into an analogous form [Sváb-Zamazal et al. 2009]. Ritze and her colleagues used this pattern-

centric approach to find complex mappings between classes (and value restrictions) in one ontology

and properties in another [Ritze et al. 2009].

4.2 String-based Approach

Our goal is to develop an entirely string-based approach to property alignment. This is in keeping

with our belief that the label given to an entity is a very good indicator of its intended meaning

and use, and that string-based approaches can often be competitive with much more complex and

time-consuming methods. Specifically, we would like to develop an approach with the following

characteristics:

• The approach should be elegant, in the sense that it is as simple as possible. It should not

require setting a large number of parameters or utilize a store of rules or templates, which can

be brittle.

• The approach should not make any unnecessary assumptions nor place any restrictions on how

the metric can be used. In particular, it should not make arbitrary trade-offs between precision

and recall, because the appropriate choice is very application-dependent.

• The approach should produce meaningful confidence values for each match, which correspond

well to human opinion.

Considering these guidelines, we have arrived at the following approach, which we will call

PropString.

Four strings are extracted for each property: the label, the core concept, the domain, and the

range. All strings are tokenized and put into lower case.

The label is simply the entity’s label, i.e. the portion of the URI after the last # or / or, failing

that, the value in the rdf:label field.
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The core concept is either the first verb in the label that is greater than four characters long or, if

there is no such verb, the first noun in the label, together with any adjectives that modify that noun.

For example, the label “wrote paper” has the core concept “wrote” because it is the first verb. The

label “has corresponding author” has the core concept “corresponding author” because “has” is a

verb less than five characters and “corresponding” is an adjective modifying the noun “author.” We

arrived at this technique through an analysis of common naming patterns for properties. While this

approach is not perfect, it frequently allows us to detect the key part of property labels without the

need for templates or rules. We used the Standford log-linear part of speech tagger to compute the

core concept [Toutanova et al. 2003]. We used the model included with the software distribution,

which was trained on English text from the Wall Street Journal.

The domain (resp. range) string is a concatenation of the labels of any classes in the domain

(resp. range) of a property. In the case of datatype properties, the range is set to “literal.” This

was done rather than using the actual datatype because there are a variety of ways to represent the

same data. In particular, many times information that is inherently numeric is encoded as a string.

In order to facilitate strong recall, we take a liberal viewpoint on datatype similarity.

The similarity of each of these four pairs of strings is then computed. For the entity label and

core concept, the soft TF-IDF metric, trained on the properties from both ontologies, is used. The

internal threshold for that metric is set at 0.9. The similarity of the domain and range is computed

using a standard TF-IDF metric trained on all entities from both ontologies, which was shown in

Chapter 2 to have reasonable performance on classes in terms of both precision and recall. Because

both the soft and regular versions of the TF-IDF metric are asymmetric, we compute the similarity

values in both directions, i.e. sim(a, b) and sim(b, a), and average the two values.

While the vast majority of alignment systems use a string similarity metric, they use them in

different ways. One approach is to find highly precise “anchor” matches which serve as the seed that

the rest of the alignment grows out from. Another approach is to use a string metric to filter out

any obviously incorrect matches in order to reduce computational complexity. This requires a string

metric with high recall. To address both of these use cases, the PropString approach can be run in

two configurations: precision-oriented and recall-oriented. In the precision-oriented mode, a pair of

entities is considered a match if the similarity values for their core concepts, domains, and ranges

are all greater than the threshold. In the recall-oriented mode, the pair is considered a match if the

similarity values for their core concepts or their domains and ranges are greater than the threshold.

One question that might be asked is “why not concatenate the domain and range information on

to the property’s label and consider the entire thing as one string?” The reason this is not done is

because it frequently confuses inverse properties, in which the domain of one property is the same
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as the range of the other and vice versa, as equivalent.

Requiring the core concept, domain, and range similarity to all be higher than the threshold

results in very good precision and avoids many false positives of the variety that seem reasonable

based on label but are used for different purposes by the two ontologies. However, allowing matches

based solely on high similarity of domain and range in the recall-oriented configuration results in

very low precision unless further steps are taken. To address this, we take two approaches that work

together to reduce the number of false positives in this configuration. The first is the calculation

of the confidence value: this is done by averaging the similarity values for the exact labels, their

domains, and their ranges. The second is that we keep a list of each entity that is considered a

match so far, along with the entity it maps to and the confidence value. Every time a new potential

match between properties is identified, its confidence value is checked against any existing current

matches involving those properties. If the new match has a greater confidence value, the old match

is removed in favor of the new one. If the new match does not have greater confidence, it is ignored.

Using the exact label similarity when computing the confidence values rather than the core concept

eliminates the loss of precision associated with extracting the core concept, effectively breaking any

ties in favor of the closer lexical matches. This approach is somewhat similar to the stable marriage

algorithm used in the test framework in Chapter 2, but it is significantly more scalable. The effect

of this approach is that any properties with the same domain and range act as a filter, with the

specific match from that set chosen based on the actual property label. This is shown below, where

the YAGO property “influences,” with a domain and range of “Person,” is being matched:

yago:influences = dbpedia:relative: 0.67

yago:influences = dbpedia:father: 0.67

yago:influences = dbpedia:mother: 0.67

yago:influences = dbpedia:spouse: 0.67

yago:influences = dbpedia:influencedBy: 0.93

yago:influences = dbpedia:influenced: 0.99

One thing to note: when looking at the mistakes made by an alignment system on established

benchmarks, it is very tempting to develop additional checks to avoid them. For instance, if the

system cannot determine that “has the last name” is equivalent to “has surname,” it is very tempting

to add a module that uses a thesaurus, web search engine, or other resource to evaluate the semantic

similarity between labels. Similarly, if two properties have the same label, such as “has name,” but

one is used for people while the other is used only for conferences, it is tempting to use the instance

data available to differentiate between these uses. We have tried both of these approaches, along

with many, many others. The difficulty is that, while these approaches do indeed eliminate the
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mistakes they were inspired by, they tend to cause many more. That is why it is important to

evaluate each individual aspect of any proposed alignment method to make sure that they are all

contributing positively to overall performance. This is the goal of the next section.

The source code for PropString is available at http://michellecheatham.com/files/PropString.zip.

4.3 Evaluation

In this section we will analyze the performance of the PropString approach when applied to both

the existing and our proposed revision of the OAEI Conference track. We will also consider the

effect on overall performance of each aspect of the approach. Finally, we will consider the results

produced on the larger, real-world DBPedia-YAGO alignment task.

4.3.1 Conference

Table 4.5 shows the results of PropString on both versions of the Conference track reference align-

ments. The system was configured with a threshold of 0.9 and to only include matches in which

both entities were in the namespace of the ontologies to be matched (in accordance with the OAEI

guidelines). The results are compared with those of Soft TF-IDF with a threshold of 0.8. Recall

from figure 2.13 that this was the best-performing string metric for property alignment. It is ev-

ident that PropString greatly outperforms Soft TF-IDF on the current version of the Conference

track. The precision-oriented configuration of PropString quintuples the precision of Soft TF-IDF

(to a perfect 1.0) while maintaining roughly the same recall. Analogously, the recall-oriented version

doubles the recall of Soft TF-IDF while still achieving noticeably better recall. The f-measures for

both the precision- and recall-oriented configurations are double that of Soft TF-IDF. The results

for the expert-validated versions of the existing reference alignment tell essentially the same story

for both the discrete and continuous evaluation approaches, with the caveat that the recall-oriented

configuration does not have quite as high precision value in the continuous case.

Table 4.6 is a duplicate of 4.4, which shows the most commonly missed matches by the top-

performing alignment systems from 2013. The extra column shows the confidence value that Prop-

String (running in the recall configuration with a threshold of 0.9) assigned to each of these matches.

PropString was able to correctly identify 9 of these 31 matches, including 8 of the 22 on which more

than half of the experts agreed. This is quite encouraging considering that these were the most

difficult matches for current alignment systems to identify. Several matches with limited or no

label similarity were correctly found, such as edas:endDate = sigkdd:End of conference and con-

ference:contributes = ekaw:authorOf. In addition, the confidence values assigned to the matches
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that were found have quite reasonable correlation to the percentage of experts who agreed with the

matches.

We now turn from a holistic evaluation of the performance of this approach to analyzing the effect

of each aspect of the method on overall performance. This is somewhat difficult to do because the

aspects do not stand alone – they influence one another. Therefore there is a combinatorial problem

related to fully analyzing the behavior. We will take the approach of considering the impact of each

design aspect when added to the basic Soft TF-IDF metric (Table 4.7), as well as the impact of each

aspect when removed from the complete PropString approach (Table 4.8). For simplicity, results

are shown only for version 2 of the Conference track reference alignments.

Table 4.7 shows that no approach in isolation can achieve the overall precision, recall, or f-

measure of the complete PropString metric. Also, the table shows that extracting the core concept

from the property labels and considering domain and range information independent of the property

label both significantly improve recall, as designed. Further, we see that considering domain and

range in addition to the property label has a very large impact on precision. Finally, training the

soft TF-IDF metric on only properties rather than all entities did not improve results, but it also

does not negatively impact precision or recall, which is useful in the sense that it is more scalable

and time-efficient.

Table 4.8 shows that there are not any superfluous aspects to the PropString metric – removing

any element reduces performance. In particular, removing the idea of extracting the core concept

from property labels has such a disastrous effect on recall that the precision-oriented configuration

becomes useless. Similarly, removing either the best match filter or using simple label similarity for

the confidence value rather than averaging label, domain, and range similarity cuts precision in half

in the recall-oriented configuration. Consideration of domain and range in the similarity computation

is shown to be the key to this approach. (Note that the precision and recall orientations are based

on whether or not domain and range are required to be similar, so there is only one row in the table

for this aspect.)

4.3.2 DBPedia-YAGO

In order to evaluate the performance of PropString on a larger and more realistic alignment task,

we apply it to the DBPedia-YAGO test case described in Chapter 3. We compare the performance

of PropString to that of the basic Soft TF-IDF similarity metric and the PARIS alignment system.

PARIS is an acronym for Probabilistic Alignment of Relations, Instances, and Schema. The system

approaches property alignment by considering the degree of overlap between the sets of instances

involving each property [Suchanek et al. 2011b].
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There is no established reference alignment for the DBPedia and YAGO ontologies. We begin the

process of creating one by collecting the equivalent property relationships generated by PropString,

Soft TF-IDF, and PARIS and using Mechanical Turk to verify their accuracy. In total, these

three approaches produced 133 unique equivalence matches that involved properties. We formulated

questions for each match of the form “Does property label A mean the same thing as property label

B?” Respondents were instructed to choose one of four options:

1. They mean the same thing

2. One is a more general or more specific term than the other

3. They are related in some other way

4. There is no relation

We provided these more nuanced options rather than just yes or no because we would like to

eventually develop a reference alignment useful for evaluating the performance of alignment systems

that produce all types of matches. In order to provide some context, we provided information about

the domain and range of each property and up to five examples of instances with values for each

property. An example of one of these questions is shown below:

A "person" has a property called "directed" that involves a "thing." Examples are:

dario argento -> four flies on grey velvet

eldor magomatovich urazbayev -> tailcoat for shalopaya

masahiro shinoda -> gonza the spearman

jon monday -> the last straw film

d. w. griffith -> the fight for freedom

A "thing" has a property called "director" that involves a "person." Examples are:

la rabbia -> pier paolo pasolini

two living, one dead -> anthony asquith

sasneham -> sathyan anthikad

la rabbia -> giovannino guareschi

smart blonde -> frank mc donald (director)

Does "directed" mean the same thing as "director"?

Please choose the best answer
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1. They mean the same thing

2. One is a more general or more specific term than the other

3. They are related in some other way

4. There is no relation

The 133 matches were grouped into 19 sets of 7 questions each, and we paid 25 cents for each

set. Preliminary testing showed that the general response on these more nuanced questions were

not as reliable as those asked when verifying the Conference track reference alignments (which were

simply “yes or no” questions). We therefore asked only the Super Turkers from that experiment to

participate in this one. There were ten of these individuals, and we got input from 6 or 7 of them

for each match.

Table 4.9 shows a summary of the results; the complete set are included in Appendix B. The

second column of Table 4.9 shows, out of the 133 suggested equivalence matches involving properties,

the number of matches falling into each relationship category according to the consensus among the

Turkers. The third column indicates the average percentage agreement among the Turkers on each

category. Overall, the percentage of agreement with the consensus answer across all matches is 72

percent.

Rather than requiring precise agreement on the type of relationship (if any) for each potential

match, it might make sense for our current purposes to consider a weaker sense of agreement. One

way to do this is to consider two answers to be in agreement if they both either indicate some

relationship exists or they both conclude there is no relation between the two properties. In this

case, if one person indicated two entities are related in a sub/super relationship and another indicates

that they are equivalent, these answers would be considered in agreement. Two answers would only

be seen to disagree if one indicated there is no relation at all and the other disagreed. This way

of interpreting the results might be useful for an alignment system if the results from this phase

were being used to either find all types of relationships between entities or to gather all possible

matches and use further processing to filter the set down to only equivalence relations. We will

call this “recall-oriented.” Using this measure, the consensus among the Turkers across all suggested

matches is 88 percent.

Another possible way to interpret the results is to consider two answers to be in agreement only

if they both conclude either that the entities are precisely equivalent or that they are not equivalent.

Using this viewpoint, if one person indicates that two entities are related in a sub/super relationship

and another indicates that they are precisely equivalent, these answers would be seen as disagreeing.

If instead one person considered the match to be a sub/super relationship and another considered

them to have no relationship at all, these two individuals would be seen as in agreement because
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they both conclude that there is no equivalence relationship. This interpretation may be useful if an

alignment system is attempting to find high-quality equivalence relations between entities, which it

may subsequently use as a seed for further processing. We will refer to this as “precision-oriented.”

Coincidentally, the overall agreement among the Turkers using this definition is also 88 percent.

Figure 4.1 shows compares the results of PARIS, Soft TF-IDF, and PropString on the YAGO-

DBPedia property alignment task. This figure measures precision, recall, and f-measure using the

precision-oriented definition of correctness described above. PropString was run in both its precision

and recall configurations. Note that this refers to the way PropString filters potential matches and

is orthogonal to the precision- and recall-oriented performance metrics. The threshold for Soft TF-

IDF was set to 0.8 and the threshold for PropString was set to 0.9, based upon the best-performing

thresholds for these approaches on the Conference track. In addition, PropString was run in its recall

configuration with a threshold of 0.5 because the developers of PARIS indicated that they needed

to use a lower threshold on the DBPedia-YAGO task than on the OAEI alignment tasks. Figure 4.2

shows the same information using the recall-oriented definition of correctness for the computation

of precision, recall, and f-measure.

Figures 4.1 and 4.2 reveal that the basic string metric Soft TF-IDF produces the highest preci-

sion, regardless of how is correctness is measured. Further, that precision is 0.79 and .96 (depending

on evaluation approach), which is on par with the degree of agreement among the Turkers on these

matches. So once again we see that a straightforward string metric can in some ways outperform

more sophisticated alignment strategies. In fact, PARIS and the precision-based configuration of

PropString have such low recall that they may not be of much utility for many application scenar-

ios. This is surprising considering the strong performance of this PropString configuration on the

properties within the Conference track. We argue that this wide variation in performance is further

indication of the need for more benchmarks involving property alignment.

Another thing to note from these results is the very strong performance of the recall-based

configuration of PropString, both relative to the other approaches and in an absolute sense. When

PropString is run in its recall configuration with a threshold of 0.5, both the precision and recall are

in the neighborhood of that produced by much more complex alignment systems on the simpler task

of class equivalence in more structured test sets, such as the Conference track. Of course, the very

preliminary nature of the YAGO-DBPedia reference alignment must be kept in mind. More work,

hopefully involving results produced by many other alignment system on this pair of ontologies, is

needed to confirm these results.

It is also interesting that the performance of the recall-based configuration of PropString varies

more than the other approaches between the precision- and recall-oriented definitions of correctness.
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Figure 4.1: Precision-oriented evaluation of the results on the YAGO-DBPedia alignment task

This implies that this form of PropString is identifying many valid relationships but is incorrectly

classifying them all as equivalence rather than correctly distinguishing sub-property/super-property

relationships, inverse properties, etc.

In general, the performance of PropString when matching properties in both the OAEI Confer-

ence track and the YAGO-DBPedia alignment task compares favorably with existing approaches.

However, further validation is needed, particularly with respect to more real-world alignment tasks.
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Figure 4.2: Recall-oriented evaluation of the results on the YAGO-DBPedia alignment task
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Property 1 Property 2 Freq. Conf.

cmt:hasBeenAssigned ekaw:reviewerOfPaper 15 0.46

cmt:assignExternalReviewer conference:invites co-reviewers 15 0.54

cmt:assignedByReviewer conference:invited by 15 0.31

edas:endDate sigkdd:End of conference 15 0.85

conference:is given by sigkdd:presentationed by 15 0.85

conference:has a track-workshop-tutorial topic confOf:hasTopic 15 0.31

conference:contributes iasted:write 15 0.31

cmt:hasBeenAssigned confOf:reviewes 15 0.62

conference:gives presentations sigkdd:presentation 15 0.46

conference:has the last name confOf:hasSurname 15 0.92

cmt:assignedTo ekaw:hasReviewer 15 0.69

confOf:reviewes edas:isReviewing 15 0.77

confOf:hasSurname edas:hasLastName 15 1.0

conference:has a review expertise edas:hasRating 15 0.23

cmt:writtenBy ekaw:reviewWrittenBy 15 0.69

cmt:hasSubjectArea confOf:dealsWith 14 0.46

cmt:writePaper confOf:writes 14 0.62

edas:isReviewedBy ekaw:hasReviewer 14 0.92

cmt:hasAuthor confOf:writtenBy 14 1.0

confOf:writes edas:hasRelatedPaper 14 0.23

edas:hasCostAmount sigkdd:Price 14 0.85

cmt:assignedTo edas:isReviewedBy 14 0.92

edas:startDate sigkdd:Start of conference 14 0.92

cmt:hasConferenceMember edas:hasMember 14 0.54

cmt:hasBeenAssigned edas:isReviewing 14 0.62

edas:hasLocation ekaw:heldIn 14 0.92

edas:hasName sigkdd:Name of conference 14 0.08

edas:isReviewing ekaw:reviewerOfPaper 14 1.0

confOf:hasEmail sigkdd:E-mail 13 0.92

conference:has an email sigkdd:E-mail 13 0.92

conference:contributes ekaw:authorOf 13 0.69

Table 4.4: Most common correct property matches omitted by alignment systems in the 2013 OAEI
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System Ver Dis Prec Dis Rec Dis Fms Con Prec Con Rec Con Fms

PropString (prec) 1.0 1.0 0.26 0.41 NA NA NA

PropString (rec) 1.0 0.34 0.5 0.4 NA NA NA

Soft TF-IDF 1.0 0.2 0.24 0.22 NA NA NA

PropString (prec) 2.0 0.92 0.3 0.45 0.89 0.28 0.43

PropString (rec) 2.0 0.32 0.59 0.42 0.25 0.51 0.33

Soft TF-IDF 2.0 0.2 0.3 0.24 0.16 0.23 0.19

Table 4.5: Results on the OAEI Conference track on both versions of the reference alignments
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Property 1 Property 2 Expt. Sys.

cmt:hasBeenAssigned ekaw:reviewerOfPaper 0.46 0.0

cmt:assignExternalReviewer conference:invites co-reviewers 0.54 0.0

cmt:assignedByReviewer conference:invited by 0.31 0.0

edas:endDate sigkdd:End of conference 0.85 0.84

conference:is given by sigkdd:presentationed by 0.85 0.0

conference:has a track-workshop-tutorial topic confOf:hasTopic 0.31 0.0

conference:contributes iasted:write 0.31 0.0

cmt:hasBeenAssigned confOf:reviewes 0.62 0.0

conference:gives presentations sigkdd:presentation 0.46 0.0

conference:has the last name confOf:hasSurname 0.92 0.0

cmt:assignedTo ekaw:hasReviewer 0.69 0.0

confOf:reviewes edas:isReviewing 0.77 0.0

confOf:hasSurname edas:hasLastName 1.0 0.0

conference:has a review expertise edas:hasRating 0.23 0.0

cmt:writtenBy ekaw:reviewWrittenBy 0.69 0.75

cmt:hasSubjectArea confOf:dealsWith 0.46 0.0

cmt:writePaper confOf:writes 0.62 0.61

edas:isReviewedBy ekaw:hasReviewer 0.92 0.67

cmt:hasAuthor confOf:writtenBy 1.0 0.0

confOf:writes edas:hasRelatedPaper 0.23 0.0

edas:hasCostAmount sigkdd:Price 0.85 0.0

cmt:assignedTo edas:isReviewedBy 0.92 0.0

edas:startDate sigkdd:Start of conference 0.92 0.84

cmt:hasConferenceMember edas:hasMember 0.54 0.0

cmt:hasBeenAssigned edas:isReviewing 0.62 0.0

edas:hasLocation ekaw:heldIn 0.92 0.0

edas:hasName sigkdd:Name of conference 0.08 0.85

edas:isReviewing ekaw:reviewerOfPaper 1.0 0.0

confOf:hasEmail sigkdd:E-mail 0.92 0.87

conference:has an email sigkdd:E-mail 0.92 0.86

conference:contributes ekaw:authorOf 0.69 0.63

Table 4.6: PropString performance on the most common correct property matches omitted by

alignment systems in the 2013 OAEI
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Configuration Dis Prec Dis Rec Dis Fms Con Prec Con Rec Con Fms

Soft TF-IDF 0.18 0.32 0.24 0.15 0.25 0.19

Property-trained 0.17 0.35 0.23 0.14 0.29 0.19

Core concept 0.09 0.46 0.15 0.08 0.44 0.14

Best match 0.2 0.3 0.24 0.16 0.23 0.19

Confidence calc. 0.37 0.35 0.36 0.25 0.27 0.26

Domain/range (prec) 0.86 0.16 0.27 0.81 0.14 0.23

Domain/range (rec) 0.2 0.38 0.26 0.15 0.28 0.2

PropString (prec) 0.92 0.3 0.45 0.89 0.28 0.43

PropString (rec) 0.32 0.59 0.42 0.25 0.51 0.33

Table 4.7: Impact of individual components added to Soft TF-IDF on performance on Conference

version 2

Configuration Dis Prec Dis Rec Dis Fms Con Prec Con Rec Con Fms

PropString (prec) 0.92 0.3 0.45 0.89 0.28 0.43

PropString (rec) 0.32 0.59 0.42 0.25 0.51 0.33

Property-trained (prec) 0.92 0.3 0.45 0.89 0.28 0.43

Property-trained (rec) 0.33 0.59 0.42 0.25 0.48 0.33

Core concept (prec) 1.0 0.05 0.1 0.97 0.06 0.1

Core concept (rec) 0.34 0.46 0.39 0.3 0.4 0.34

Best match (prec) 0.92 0.3 0.45 0.89 0.28 0.43

Best match (rec) 0.14 0.49 0.22 0.1 0.37 0.16

Confidence calc. (prec) 0.92 0.3 0.45 0.87 0.3 0.44

Confidence calc. (rec) 0.14 0.43 0.22 0.14 0.41 0.2

Domain/range 0.37 0.49 0.42 0.26 0.4 0.32

Soft TF-IDF 0.18 0.32 0.24 0.15 0.25 0.19

Table 4.8: Impact of individual components removed from PropString on performance on Conference

version 2
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Relation Type Number of Matches Percent Agreement

Equivalent 53 79

Sub/super 11 66

Other relation 37 60

No relation 32 76

Table 4.9: Summary of Mechanical Turk results on the YAGO-DBPedia matches identified by

PARIS, PropString, and Soft TF-IDF
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Conclusion

Ontology alignment is essential to the development of applications that leverage the potential of

the Semantic Web. Unfortunately, most current state of the art alignment systems are capable of

identifying only the simplest of relationships between ontologies: 1-to-1 equivalence. Even more

vexing is that the performance of finding such equivalence relations between properties lags far

behind that for classes and instances. The work presented here addressed that issue in a systematic,

data-guided manner.

Chapter 2 showed that string similarity metrics alone can achieve performance that is competitive

with the top-performing full-featured alignment systems. The key is to choose the correct similarity

metrics for a particular pair of ontologies and use case. We presented guidelines to assist alignment

system developers in making this choice. This chapter also showed that the most commonly sug-

gested string preprocessing strategies, such as stop word removal and consideration of synonyms,

are not nearly as effective as hoped. This is why it is important to analyze every component of an

alignment system in isolation: too often alignment system developers will throw in everything but

the kitchen sink and quit as soon as they achieve good performance. It is important to go back and

review whether or not every component that was added contributes positively to the overall perfor-

mance of the alignment system. This was our methodology when developing PropString, an entirely

string-based approach to aligning properties. PropString works by extracting the “core concept” of

a property’s label. The similarity of two properties’ core concepts, domains, and ranges are used to

identify potential matches. The system can be run in either a precision- or recall-oriented configura-

tion. In the precision-oriented mode, the similarity of the core concept, domain, and range must all

be greater than the threshold. In the recall-oriented mode, a match is considered viable if either the

core concept or the domain and range have a similarity above the threshold. The confidence value

of a match is the average of the string similarity of the properties’ labels, domains, and ranges. This

was shown to correlate well to the degree of expert agreement on property matches.

89
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PropString was evaluated on the OAEI Conference track. Unfortunately, the current version of

the reference alignments for that dataset have a confidence value of 1.0 for every match. We showed

via a survey of experts that humans do not achieve this degree of consensus on these alignments.

In order to generate realistic confidence values for the matches that could be used to validate those

produced by PropString, we created a more nuanced version of the OAEI Conference track reference

alignments via expert survey and crowdsourcing using Amazon’s Mechanical Turk platform. We also

created a scaled-down version of the DBPedia and YAGO ontologies that can also be used to assess

the performance of property alignment systems. Our evaluation of PropString on these alignment

tasks showed that it performs well in comparison to both Soft TF-IDF, which is the best-performing

basic string similarity metric, and PARIS, a full-featured alignment system.

5.1 Lessons Learned

Over the course of this research effort, we learned several things that are applicable to the field of

ontology alignment in general.

5.1.1 Words matter

One of the unique features of ontologies is the subject matter expertise encoded in the structure

of the data, i.e. the restrictions and relationships between entities. Many alignment systems un-

derstandably try to leverage this information. However, the importance of entity labels should not

be overlooked. While the developers of an ontology may become focused on their particular appli-

cation and forget to include some relevant axioms, they generally give careful consideration to the

labels they choose for entities. The labels therefore contain a lot of implicit meaning and should

consequently be carefully considered by alignment algorithms.

5.1.2 Aligning properties is not so hard

The performance of the large majority of current alignment systems is quite poor on properties, in

terms of both precision and recall. However, simple string similarity metrics can perform quite well

on the property matching task. The important thing to consider is that property labels typically

follow different naming patterns than classes and instances. In addition, while the key structural

information important for identifying class equivalences is sub- and superclasses, and for co-reference

resolution it is class type, for properties it is domain and range that are most critical.
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5.1.3 Benchmarks can drive innovation

In the paper “Using Benchmarks to Advance Research: A Challenge to Software Engineering,”

the authors state that “The creation and widespread use of a benchmark within a research area is

frequently accompanied by rapid technical progress and community building” and provide several

examples [Sim et al. 2003]. The OAEI benchmarks have been a big boon for the field of ontology

alignment, but new types of benchmarks are needed for progress to continue. In particular, bench-

marks involving properties, complex (beyond 1-to-1 equivalence) relations, and “messy” real-world

ontologies are needed. It would also be beneficial to have some reference alignments that are focused

on applications which do not require a logically consistent merged ontology, such as querying mul-

tiple datasets as in ontology-based data access (OBDA) systems. Developing new benchmarks for

a field is an arduous task, but the preliminary feasibility of crowdsourcing and the already-existing

active collaboration among researchers in the ontology alignment field are positives indications that

this necessary goal is attainable.

5.2 Future Work

Several aspects of the work presented here require further validation. In particular, additional

experimentation regarding crowdsourcing reference alignments using Mechanical Turk needs to be

done to verify the potential uses of the approach. For instance, our preliminary results showed

that general users can often give good input on “yes or no” alignment verification tasks but that

more complex questions regarding the type of relationship between two entities (e.g. equivalence,

subsumption, inverse properties) is more difficult. It would be useful to develop guidelines for when

and how to qualify users for different types of alignment tasks. More work in particular remains to

be done in order to generate an established high-quality reference alignment for the DBPedia-YAGO

alignment task. In order to do this, we need to generate results on this ontology pair using more

alignment systems. These results can then be manually verified, either through Mechanical Turk

or by experts. Additionally, we need to incorporate the PropString approach into a full-featured

alignment system and evaluate the difference in performance. Unfortunately, it can be difficult to

acquire the source code for a top-performing alignment system.

We also plan to explore the potential of raising the level of abstraction at which ontology align-

ment algorithms work by considering pattern-based alignment. Many times a dataset will contain

a frequently-used grouping of conceptually related entities. Examples include groups of entities de-

scribing the trajectory of a moving object, such as a person, migrating bird, or ship, or information

about an organization, such as its location, the people involved, the things it produces, etc. These
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recurring concepts are often encoded as Ontology Design Patterns [Gangemi 2005]. An ODP is a

self-contained partial ontology. It represents the core components of the concept it seeks to model,

as identified by domain experts. ODPs avoid making any unnecessary ontological commitments in

order to remain applicable in a diverse range of situations. ODPs can facilitate alignment by reduc-

ing the complexity inherent in dealing with two ontologies likely developed by different designers

with different applications in mind. Rather than trying to align these two ontologies directly with

one another, they can instead each be aligned to the application-neutral ODP. Such an approach is

more likely to involve mappings at the less complex end of the spectrum presented in Figure 1.4.

Furthermore, leveraging ODPs can enhance the scalability of an alignment algorithm by clustering

entities into different ODPs. Individual entity relations would then need to be determined only

within those in an ODP rather than across the whole of the ontologies.

We would also like to move towards applying our ontology alignment capabilities to several real-

world applications. In particular, we will soon begin work on a GeoLink project that involves bringing

together a wide variety of Earth science data and making it available to researchers from a single

interface. This project will allow wider dissemination of Earth science research results, new insights

through analysis of data in unexpected ways, and avoidance of costly repetition of experiments.

We also plan to use the similarity metrics developed in this research in a linked data visualization

system designed to allow users to interactively formulate SPARQL queries over multiple linked

datasets. Similarity metrics will allow conceptually similar entities from different datasets to be

placed near one another in the visualization. The similarity values can also be used to cluster entities

at different levels of abstraction, which makes it easier for users to navigate large datasets and drill-

down on topics of interest. We are also interested in applying ontology alignment techniques to issues

related to the privacy concerns of Big Data. Currently, many linked datasets are anonymized before

being made available on the Semantic Web. This anonymization process often involves ensuring

k-anonymity, which requires that at least k individuals have all possible combinations of pseudo-

identifier characteristics [Sweeney 2002]. For instance, if the dataset contains information about

people’s voting district, gender, and birth month and year, at least k people would be required to

have all combinations of these attributes (if not, either fake data is added or the information is made

more coarse, e.g. by providing only birth year rather than month and year). As the dimensionality

of data increases (i.e. more features are available for each person), k-anonymity breaks down [Ohm

2009]. Often this happens when new datasets are released that can be joined with existing datasets

through some public fields. Ontology alignment facilitates this process of joining different datasets.

We would like to apply an alignment system to the problem of de-anonymizing data and explore

new anonymization strategies that are resistant to this approach. Through these applications, we
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hope to gain a greater insight into the practical requirements for ontology alignment systems and

establish new techniques and methods that move the field forward.



Appendices

94



A

OAEI String Metric Survey

Algorithm Lexical Metrics Preprocessing

AgreementMaker [Sunna and

Cruz 2007; Cruz et al. 2009;

Cruz et al. 2010; Cruz et al.

2011]

edit distance, LCS, TF-IDF stemming, stop words, syn-

onyms, normalization

Anchor-flood [Seddiqui and

Aono 2008; 2009]

JaroWinker, SMOA, SM tokenization, abbrev/acronym

expansion, stop words, catego-

rization (WordNet)

AROMA [David 2008; 2011] JaroWinkler, exact match stemming

ASMOV [Jean-Mary et al.

2010]

exact match, Levenstein, set

similarity metric for comments

tokenization, normalization,

synonyms, part-of-speech

AUTOMS [Kotis et al. 2006] COCLU

BLOOMS [Pesquita et al.

2010]

exact match, Jaccard, evi-

dence content

tokenization, stop words, syn-

onyms, normalization, stem-

ming, spelling variants (pro-

posed)

CIDER [Gracia and Mena

2008; Gracia et al. 2011]

exact match, Levenstein normalization, synonyms
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Cluster-based similarity aggre-

gation [Tran et al. 2011]

edit distance, TF-IDF/cosine

similarity

CODI [Noessner and Niepert

2010; Huber et al. 2011]

Levenstein, cosine, Jaro-

Winker, Smith-Waterman

Gotoh, overlap coefficient,

Jaccard

tokenization, normalization,

stop words

COMA++ [Massmann et al.

2006]

Cross-lingual Dutch to English

alignment [Bouma 2009]

stemming, split compound

words, synonyms

DSSim [Nagy et al. 2006; 2007;

Nagy et al. 2008]

Monge-Elkan, Jaccard, Jaro-

Winkler

synonyms, split compound

words, language tag, transla-

tions, abbrev expansion

Eff2Match [Chua and Kim

2010]

exact match tokenization, stemming, syn-

onyms, normalization

Falcon-AO/ObjectCoref [Hu

et al. 2006; Hu et al. 2007; Hu

et al. 2010]

SMOA, edit distance synonyms (proposed), transla-

tions (proposed)

GeRoMeSuite/SMB [Quix

et al. 2008; Quix et al. 2010]

Levenstein, Jaro-Winkler,

SMOA, soft TF-IDF

synonyms

HMatch [Castano et al. 2006]

Hybrid alignment strategy for

anatomical ontologies [Zhang

and Bodenreider 2007]

exact match synonyms, normalization

JHU/APL Onto-Mapology

[Bethea et al. 2006]

Jaro-Winkler, 2-gram, docu-

ment indexing

stop words

KOSIMap [Reul and Pan 2009] Jaro-Winkler, Q-gram,

SMOA, Monge-Elkan

stop words, stemming
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LDOA [Kachroudi et al. 2011] Levenstein, Jaro-Winkler, soft

Jaccard

LILY [Wang and Xu 2007;

2008; Wang 2011]

Levenstein, edit distance

LN2R [Saıs et al. 2010] soft Jaccard synonyms (proposed)

LogMap [Jiménez-Ruiz et al.

2011]

exact match, SMOA synonyms, alternate words

forms (i.e. reverse stemming)

MaasMatch [Schadd and Roos

2011]

document vectors stemming, stop words

MapPSO [Bock et al. 2009;

Bock et al. 2011]

SMOA, TF-IDF

NBJLM [Wang et al. 2010] exact match synonyms

NLM Anatomical Ontology

Alignment System [Zhang and

Bodenreider 2006]

exact match normalization, synonyms,

stemming

OACAS [Zghal et al. 2011] Levenstein, Q-gram, Jaro-

Winkler

OKKAM [Stoermer and Ras-

sadko 2009]

Levenstein

OLA [Djoufak-Kengue et al.

2007]

LCS, normalized Hamming

distance, edit distance

tokenization, synonyms

OMReasoner [Shen et al. 2011] edit distance, prefix, suffix split compound words (pro-

posed)

OntoDNA [Kiu and Lee 2007] Levenstein normalization, stop words

Optima [Thayasivam and

Doshi 2011]

Smith-Waterman
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OWL-CM [Yaghlane and Laa-

mari 2007]

edit distance

OWL-CtxMatch [Niedba la

2006]

synonyms

PRIOR/PRIOR+ [Mao and

Peng 2006; 2007]

cosine similarity, Levenstein,

document indexing

synonyms (proposed), transla-

tions (proposed)

RiMOM [Li et al. 2006; Li

et al. 2009; Zhang et al. 2008;

Wang et al. 2010]

edit distance, KNN, TF-

IDF/cosine distance

tokenization, stemming, stop

words, synonyms

SAMBO/SAMBOdtf [Tan and

Lambrix 2007; Lambrix et al.

2008]

n-gram, edit distance tokenization, stemming, stop

words, synonyms

SEMA [Spiliopoulos et al.

2007]

COCLU synonyms

SERIMI [Araujo et al. 2011] RWSA tokenization, normalization

SILAS [Ossewaarde 2007] exact match

SOBOM [Xu et al. 2010] edit distance, SMOA

SODA [Zghal et al. 2007] Jaro-Winkler, Monge-Elkan

Spider [Sabou and Gracia

2008]

TaxoMap [Zargayouna et al.

2007; Hamdi et al. 2008;

Hamdi et al. 2009; Hamdi

et al. 2010]

Lin’s similarity measure, exact

match, substring inclusion

stop words, part-of-speech,

translation, synonyms (pro-

posed)

X-SOM [Curino et al. 2007] Jaro, Levenstein
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YAM++ [Ngo et al. 2011] Levenstein, Smith-Waterman,

Jaro, Jaro-Winkler, Monge-

Elkan, prefix, suffix, LCS,

SMOA

Zhishi.links [Niu et al. 2011] exact match



B

YAGO-DBPedia Entity Relations

YAGO entity DBPedia entity Relationship

hasWikipediaAbstract abstract 3

directed director 3

subjectEndRelation skos/core#subject 3

isLeaderOf leader 1

isLeaderOf leadership 1

hasNumberOfWikipediaLinks numberOfRooms 4

hasNumberOfWikipediaLinks numberOfNeighbourhood 4

hasLanguageCode languageCode 1

hasLanguageCode fdaUniiCode 4

hasLanguageCode millsCodeBE 4

hasGeoCoordinates capitalCoordinates 3

rdf-schema#subClassOf class 2

permanentRelationToObject projectObjective 3

objectEndRelation relation 2

created related 4

hasAirportCode targetAirport 3

hasNeighbor neighbourhood 3

hasNeighbor neighboringMunicipality 3

diedOnDate deathDate 1

participatedIn participant 3

hasTypeCheckPattern canBaggageChecked 4

hasPopulationDensity PopulatedPlace/populationDensity 1

100
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hasAcademicAdvisor parent 4

hasAcademicAdvisor doctoralAdvisor 3

hasAcademicAdvisor academicAdvisor 1

hasWebsite websiteLabel 3

rdf-schema#domain domain 1

placedIn placeOfBurial 4

hasArea area 1

hasArea PopulatedPlace/area 1

hasArea Lake/areaOfCatchment 3

hasGivenName foaf/0.1/givenName 1

playsFor plays 3

livesIn residence 1

rdf-schema#range range 1

isCitizenOf citizenship 1

isCitizenOf stateOfOrigin 1

hasDuration duration 1

hasDuration SpaceMission/stationVisitDuration 3

isKnownFor knownFor 1

hasBudget budget 1

rdf-syntax-ns#type type 1

hasNumberOfWikipediaLinks numberOfSportsEvents 4

isMarriedTo spouse 1

isMarriedTo parent 4

hasOfficialLanguage officialLanguage 1

hasOfficialLanguage officialName 4

hasOfficialLanguage language 2

hasPopulationDensity GeopoliticalOrganisation/populationDensity 1

hasHeight Person/height 1

hasHeight MeanOfTransportation/height 1

hasHeight AutomobileEngine/height 1

objectStartRelation relation 1

skos/core#prefLabel prefectMandate 4

skos/core#prefLabel prefect 4

skos/core#prefLabel prefix 4
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hasPredecessor predecessor 1

hasLatitude geo/wgs84 pos#lat 3

hasChild child 1

hasChild rightChild 3

isAffiliatedTo affiliate 3

hasWeight AutomobileEngine/weight 1

hasWeight Person/weight 1

hasPages wikiPageID 4

hasPages grayPage 4

hasSuccessor successor 1

wasBornOnDate birthDate 1

extractionSource source 3

graduatedFrom almaMater 4

wasCreatedOnDate related 4

hasWeight MeanOfTransportation/weight 1

hasWeight Weapon/weight 1

hasISBN isbn 1

hasCapital capital 1

hasTitleText title 1

hasTitleText titleDate 4

hasMotto motto 1

hasLength Weapon/length 1

hasLength MeanOfTransportation/length 1

hasLength Infrastructure/length 1

hasThreeLetterLanguageCode languageCode 2

hasThreeLetterLanguageCode licenceLetter 4

rdf-schema#comment rdf-schema#comment 1

rdf-schema#comment comment 1

timeToLocation location 3

hasRevenue revenue 1

hasWikipediaCategory category 2

hasMusicalRole role 2

hasExternalWikipediaLinkTo linkedSpace 3

hasExternalWikipediaLinkTo wikiPageExternalLink 1
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hasLength AutomobileEngine/length 1

hasGini giniCoefficientAsOf 3

happenedIn place 3

hasGeonamesClassId classes 2

hasConfidence sourceConfluence 4

influences influenced 3

influences influencedBy 1

actedIn dateAct 3

rdf-syntax-ns#type spurType 2

isPoliticianOf belgiumPoliticalSeats 4

isPoliticianOf politicalPartyInLegislature 3

isLocatedIn locatedInArea 3

endedOnDate endDate 1

endedOnDate productionEndDate 3

hasHeight Weapon/height 1

hasNumberOfPeople numberOfStaff 3

linksTo regionLink 3

startedOnDate startDate 1

startedOnDate startReign 1

startedOnDate startCareer 3

startedOnDate activeYearsStartDate 3

hasCurrency currency 1

placedIn place 3

hasImdb imdbId 3

hasCitationTitle title 2

hasLongitude geo/wgs84 pos#long 4

relationLocatedByObject relation 3

hasContext continentRank 4

hasContext continent 4

hasFamilyName family 3

owns ons 4

hasWikipediaArticleLength mayorArticle 4

rdf-schema#label rdf-schema#label 1

hasNumberOfPeople numberOfRooms 4
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hasNumberOfPeople numberOfFilms 4

hasNumberOfPeople numberOfSportsEvents 4

permanentRelationToSubject subjectOfPlay 4

hasGender gender 1

subjectStartRelation skos/core#subject 2

extractionTechnique technique 2

worksAt work 3

isInterestedIn interest 3

isInterestedIn restingPlacePosition 4
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