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ABSTRACT

Within the theme of sustainable development, it is not desirable to either have data siloed in one location 
where it cannot be reused for purposes beyond which it was originally collected, or in a state where it 
cannot be integrated into a holistic view of the marine environment. As such, the links between datasets 
should be formally documented and exploited as best as possible. Given this, the use of Semantic Web 
technology and information modelling patterns are explored in this chapter with reference to the marine 
domain. Further, new strategies for adding semantic annotation to data in real-time are discussed and 
prototyped.

INTRODUCTION

Within the domain of marine data management, there is a history, beginning in the 1980s, of using 
controlled vocabularies to define the content of metadata fields and data file channels (UNESCO, 1987; 
Lowry, 2003; Merati & Burger, 2004; Lawrence et al., 2009; Schaap & Lowry, 2010). The availability of 
such vocabularies as Semantic Web resources through such platforms as the Marine Metadata Interoper-
ability Ontology Registry and Repository (Graybeal et al., 2012) and the Natural Environment Research 
Council Vocabulary Server (Leadbetter et al., 2014) has led to the use of Linked Data (Berners-Lee, 
2006) patterns to publish metadata and data concerning the marine domain. The Linked Ocean Data 
concept has been shown to facilitate distributed eScience through validation of chained web process-
ing services and dynamic discovery and aggregation of datasets alongside increased impact of datasets 
through formalised links to the acquisition methodologies and associated publications interpreting the 
data (Leadbetter, 2015).

When considering sustainable development of the oceans, it is most important to be able to combine 
data from a range of producers in a single application. For example, the Marine Renewable Energy Portal 

Linked Ocean Data 2.0
Adam Leadbetter

Marine Institute, Ireland

Michelle Cheatham
Wright State University, USA

Adam Shepherd
Woods Hole Oceanographic Institution, USA

Rob Thomas
British Oceanographic Data Centre, National 

Oceanography Centre, UK



70

Linked Ocean Data 2.0
 

delivered by the Sustainable Energy Authority of Ireland and the Irish Marine Institute allows potential 
energy developers access to live dashboards of current and forecast wave, wind and tidal conditions 
using data from the Marine Institute, the Commissioner of Irish Lights and the United States’ National 
Oceanic and Atmospheric Administration. However, these data are not connected in a formal Linked 
Data sense and moving in this direction would better allow users to incorporate other data sources, 
generate their own dashboards, and enquire of the data in new ways to generate new information and 
knowledge. Further, these principles can be extended to the creation of new decision support tools for 
planning operations on board research vessels, or at remote bases when considering the maintenance of 
missions of deployed Autonomous Underwater Vehicles.

In this chapter we will expand on the existing Linked Ocean Data research to include the emerging 
concepts of heterogeneous data integration through the use of ontology design patterns, and publishing 
Linked Data from sources of real-time observations. This will include:

• Revisiting the current state of the Linked Ocean Data cloud to show how it has expanded since it 
was first proposed in 2013

• Conceptualising the Linked Ocean Data cloud using advances in interchange visualisation tech-
niques (Zeng et al., 2013; Krzywinski et al, 2011) to give new insights into the interconnectedness 
of the data and information represented within the cloud

• Examining how the emergence of the concept of ontology design patterns has been successfully 
applied in the ocean science domain

• Considering the relationships which are forming between Linked Data and Big Data and how 
these have begun to be explored in marine science

• Why the Linked Ocean Data paradigm is important for a sustainable approach to the exploration 
and development of the ocean

THE STATE OF THE LINKED OCEAN DATA CLOUD

The Linked Ocean Data concept was introduced by Leadbetter et al. (2013) and was refined by Leadbetter 
(2015). The initial Linked Ocean Data cloud consisted of 18 nodes, and by the final publication listed 
above a further two nodes were incorporated. However, the visualizations used in these descriptions 
of the Linked Ocean Data cloud have not shown any quantitative information concerning the linkages 
between the nodes of the cloud, solely the qualitative fact that nodes are linked. However, prior to the 
introduction of the Linked Ocean Data cloud, Leadbetter and Lowry (2012) experiment with visuali-
sations of connections between controlled vocabularies using circos plots (Krzywinski 2009) which 
were originally designed for use in visualizing genomics data, but have since been repurposed to show 
customer flow in the motor industry, volume of courier shipments, database schemas, and presidential 
debates. The 2012 mappings from the NERC Vocabulary Server to other external controlled vocabulary 
services is shown in Figure 1. While providing some qualitative information about both the number and 
directions of the connections in the space occupied by the Linked Ocean Data cloud, this approach is not 
intuitively interpreted by those users who are unfamiliar with the circos concept. More recently, Zeng 
et al. (2013) have developed the circos plot concepts to show interchange patterns in the movements of 
passengers through public transport networks. From the 2015 state of the Linked Ocean Data cloud, it 
could be seen that there are several nodes where an interchange of data links may occur. Therefore an 
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exploration of Zeng et al.’s interchange diagrams for the Linked Ocean Data space has been undertaken 
and is presented here.

The Vocabulary of Interlinked Datasets (VoID; Alexander & Hausenblas, 2009) provides a Semantic 
Web format for standardised descriptions of the connections from one Linked Data resource to another. 
The NERC Vocabulary Server (n.d.), which provides many controlled vocabularies used by Linked 
Ocean Data publishers, the Rolling Deck to Repository Project (n.d.) and the Biological and Chemical 
Data Management Office of the Woods Hole Oceanographic Institution (n.d.) all publish VoID docu-
ments making these data easy to collect and analyse. The state interlinkages between these Semantic 
Web resources as of 12th October 2015 is summarised in Table 1.

A further development of the circos visualisation by Krzywinski et al (2011) is the hive plot, which 
uses radial axes to collect related network nodes and the network edges are shown as arcs connecting 
these edges. This is useful, as the demonstration in Figure 2 shows that even with a small, but highly 
connected subset of the Linked Ocean Data cloud plotted in this way, there is still a difficulty in inter-
preting the information. As an example, the visualisation of the interchange paths between the Linked 
Ocean Data cloud nodes as shown in Figure 2 is also presented as a hive plot in Figure 3. One benefit 
of the hive plot approach over the other visualisation methods seen before is the hive panel view, which 
allows both the connections between the entire network of Linked Ocean Data Nodes and between given 
nodes in the system to be viewed easily in one plot group.

Figure 1. External mappings from the NERC Vocabulary Server to other Semantic Web resources (1 
o’clock to 7 o’clock) and to the NERC Vocabulary Server (other sectors) as of December 2012
(after Leadbetter & Lowry, 2012). Ribbon width is representative of the number of mappings, on a logarithmic scale.
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Table 1. The number of Linked Data relationships between nodes of the Linked Ocean Data cloud as of 
20th October 2015, used to generate Figures 2 and 3

From Node To Node Number of 
Mappings

From Node To Node Number of 
Mappings

NVS-C19 geonames 126 BCODMO-Parameter NVS-P03 4

NVS-L06 HeritageData 20 BCODMO-Parameter NVS-P09 3

NVS-L06 MMISW-IOOS-Platform 26 BCODMO-Instrument NVS-L05 93

NVS-L05 MMISW-TRDI-Glossary 2 BCODMO-Instrument NVS-L22 33

NVS-L05 CAST 6 BCODMO-Instrument NVS-C77 1

NVS-L22 MMISW-TRDI-Models 12 BCODMO-Platform NVS-L06 168

NVS-C38 OrdSurv 205 R2R-Device NVS-L05 90

NVS-P01 SISSVOC 58 R2R-Device NVS-L22 24

NVS-P08 SISSVOC 1 R2R-Vessel NVS-L06 1

NVS-P08 Programmes 10 R2R-Vessel NVS-C19 42

NVS-P21 SISSVOC 3 R2R-Port NVS-C38 258

NVS-P06 DBPEDIA 470 R2R-Holding BCODMO-
Deployment

362

NVS-P06 CAST 5 MMISW-CF NVS-P07 2671

NVS-P25 CAST 1 MMISW-TRDI-Glossary NVS-L05 26

NVS-S25 LSID 3050 MMISW-IOOS-Platform NVS-L06 2

NVS-P07 EIONET 71 MMISW-TRDI-Models NVS-L22 12

NVS-S27 CHEMDPlus 345 SISSVOC QUDT 28

NVS-S27 OBO 269 SISSVOC NVS-P01 84

BCODMO-
Parameter

NVS-P01 101 SISSVOC NVS-P02 22

BCODMO-
Parameter

NVS-P02 5 SISSVOC NVS-C38 1

Figure 2. A network interchange diagram (after Zeng et al., 2013) for four nodes of the Linked Ocean 
Data Cloud. Although there is now some clarity on the number and direction of mappings, the hub node 
of the NERC Vocabulary Server makes producing a coherent visualization of this type difficult
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Integration of new data sources to the Linked Ocean Data cloud may be expedited if new data sources 
can be modelled against patterns which have emerged from a combined computer science and marine 
domain effort. The development of these ontology design patterns are described below.

ONTOLOGY DESIGN PATTERNS

Many different fields that are part craft and part science have found a need to encapsulate “best practices” 
for dealing with problems that recur frequently in those fields. For instance, in the 1970s an architect 
named Christopher Alexander developed a set of architectural patterns for different situations, such as 
a vestibule that is light and airy but not too hot when exposed to direct sunlight (Alexander, Ishikawa & 
Silverstein, 1977). Nearly twenty years later, a group of computer scientists known as the Gang of Four 
published a book of patterns related to needs that frequently arise during object oriented programming, 
such as the decorator pattern, which allows a programmer to change the behaviour of a particular object 
without affecting the behaviour of other objects of the same class (Gamma et al., 1994). A decade later, 
the success of design patterns in architecture and computer science eventually led to them being applied 
to the growing field of data science, as ontology design patterns (ODPs) (Gangemi, 2005). An ODP is 
a reusable solution to a data modelling problem that commonly occurs across many different domains 

Figure 3. A hive panel showing the mappings between (a) all nodes of the Linked Ocean Data Cloud; and 
from (b) NERC Vocabulary Server; (c) the Biological and Chemical Oceanography Data Management 
Office (BCO-DMO); (d) Rolling Deck to Repository (R2R); (e) the Marine Metadata Interoperability 
(MMI) Ontology Register and Repository; and (f) CSIRO to other nodes on the Linked Ocean Data 
cloud. Clockwise from the top, the axes represent the NERC Vocabulary Server; NASA’s Global Change 
Master Directory and Quantities, Units, Dimensions and Data Types; GeoNames; Heritage Data; MMI; 
Ordnance Survey; CSIRO; BBC; DBPEDIA; NERC’s Chemical Analytical Services Thesaurus; Life Sci-
ences ID; ChemDPlus; European Environment Agency; Open Biomedical Ontologies; R2R; BCO-DMO
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or within a wide variety of contexts within a single domain. For instance, concepts like Person or Event 
need to be represented in many different situations, while the concept of a Sample is key to many dif-
ferent geoscience datasets, from biology to chemistry to geology. When multiple scientific datasets need 
to be integrated, the join points tend to be precisely this type of core concept, which means that ODPs 
are very useful for data modelling and integration. This section will introduce some of the problems that 
arise when integrating scientific data, how ontology design patterns attempt to address these problems, 
and how they are being utilized in practice in the EarthCube GeoLink project.

Challenges of Scientific Data Integration

The complexity and scope of knowledge that man has gained about various aspects of the physical world 
has led to scientists to specialize further and further, to the point where some researchers now spend their 
entire careers studying the behaviour of one particular protein or a single species of plankton. This level 
of focus is unavoidable to some degree – no one person can be an expert in everything. However, it is 
sometimes easy to forget that the world around us is an interconnected system whose behaviour spans 
the artificial boundaries between traditional scientific disciplines, and often the greatest leaps forward 
in our understanding come at the intersection of different areas of study. These types of breakthroughs 
require the integration of data from many different scientific domains, and this integration must be done 
in such a way that the detail, uncertainty, and above all the context of the data are preserved.

The first challenge of scientific data integration is accessibility. Much of the data underpinning past 
and present scientific publications is not readily accessible – it exists only in isolated databases, as files 
on a grad student’s computer, or in tables within PDF documents. The consequence of this is that it 
is often difficult to replicate published experimental results and to do new analyses on existing data. 
There is a monetary cost as well: if data is not stored and shared in an accessible manner then it must 
be collected independently by multiple researchers, using limited scientific funding that could better be 
spent elsewhere. Fortunately, many funding agencies have taken action on this issue and now require 
that data collected via funded programs be stored in official data repositories. This is a promising de-
velopment, but many current data repositories do not make data integration easy. Traditional scientific 
data repositories are generally either relational databases or file servers containing spreadsheet, CSV, or 
irregularly structured text files. There can be various obstacles to retrieving this data, particularly due to a 
lack of consistency. For instance, some repositories might be accessible via websites or structured query 
mechanisms while others require a login and use of secure file transfer or copy protocols. Financial and 
legal concerns also inhibit data integration. Some data might be stored in proprietary database or file 
formats that require expensive software licenses to read, and licenses indicating what users are allowed 
to do with the data can be missing or restrictive, resulting in legal uncertainty.

One approach that has been proposed to address these accessibility issues is publishing data as 
“Linked Data.” In a linked dataset, every entity is given a Uniform Resource Identifier (URI) that can be 
accessed via HTTP, similar to a standard web page. When this URI is dereferenced, there is structured 
data providing more information about the entity. This data is generally expressed using RDF, and it 
may include URIs to other, related, entities. Using these standards, it possible to make data available in 
a way that is both accessible and understandable.

An example to clarify this description seems warranted. Assume that Dr. Jane Doe, a scientist at State 
University, wants to publish a linked dataset containing information about the papers she has written, 
one of which is called “An Exploration of the Feasibility of Tenure.” One way for Dr. Doe to do this is 



75

Linked Ocean Data 2.0
 

to acquire ownership of a domain name and assign URIs in that namespace to each of the entities in her 
dataset. For instance, if the domain name is profdoe.edu, then she might use the URI profdoe.edu/Jane-
Doe to represent herself and profdoe.edu/TenureFeasibilityExploration to represent the paper. Dr. Doe 
could then create files containing RDF statements about these entities and deploy them on a webserver. 
An RDF statement is a subject-predicate-object triple. For example, the following triple states that the 
paper’s title is “An Exploration of the Feasibility of Tenure”:

<profdoe.edu/TenureFeasibilityExploration>

<profdoe.edu/hasTitle>

”An Exploration of the Feasibility of Tenure”@en . 

Similarly, this statement expresses that the paper was written by Dr. Doe: 

<profdoe.edu/TenureFeasibilityExploration>

<profdoe.edu/hasAuthor> 

<profdoe/JaneDoe> .

Using the linked data standards eliminates many of the problems described above, because the data 
is in a consistent format and accessible in a uniform manner rather than, for example, in proprietary 
databases behind firewalls. Problems related to licensing can be handled by linking to an appropriate 
license that has been encoded as linked data triples. For instance, the RDF triple below indicates that 
Professor Doe’s linked dataset containing her publications (the dataset, not necessarily the publications 
themselves) is covered by version 3.0 of the creative commons “ShareAlike” license. Licensing infor-
mation is important for those wishing to make use of the information available in the linked data cloud.

<profdoe.edu/publications.rdf> 

cc:license  

<http://creativecommons.org/licenses/by-sa/3.0/> .

Accessibility is only one requirement for semantic data integration, however. For data to be truly 
useful, scientists need to be able to interpret and use it after they acquire it. Doing this requires semantic 
context. In relational databases and spreadsheets, this is sometimes lacking because important information 
about what the various data fields mean and how they relate to one another is often implicit in the names 
of database tables and column headers, some of which are incomprehensible to anyone other than the 
dataset’s creator. This problem is reduced to some degree if the linked data standards are used, because 
some of the meaning of these column names can be explicitly defined. For instance, the following RDF 
triples state that the “has Author” construct in our example relates a paper to a person and if Paper X 
“has Author” Person Y, then Person Y “wrote” Paper X.

<www.profdoe.edu/hasAuthor> 

<rdfs:domain> <www.profdoe.edu/Paper>

<www.profdoe.edu/hasAuthor> 

<rdfs:range> <www.profdoe.edu/Person>

<www.profdoe.edu/hasAuthor> 

<owl:inverseOf> <www.profdoe.edu/wrote>
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Using all of these RDF statements, a piece of software called a reasoner would be able to infer some 
semantic context for the data, such as that www.profdoe.edu/JaneDoe is a person and that she wrote the 
paper represented by www.profdoe.edu/TenureFeasibilityExploration, without the need for any natural 
language processing. These constraints enable a data provider to make the meaning of field names and 
relationships more precise, which in turn facilitates data integration, but there is still room for ambiguity. 
This potential for misunderstandings decreases as the links between datasets become more numerous, 
thereby further constraining potential interpretations of entities. For example, it is possible to express 
that the Jane Doe referred to using the URI www.profdoe.edu/JaneDoe is the same one that DBPedia, 
the linked data version of Wikipedia, refers to as dbpedia.org/page/Jane_Doe.

<www.profdoe.edu/JaneDoe>

<rdfs:seeAlso> <dbpedia.org/page/Jane_Doe>

Such links can be made at the schema level as well as the data (or instance) level. For instance, we 
can state that “hasAuthor” in this dataset is similar to “creator” in the Dublin Core terminology.

<www.profdoe.edu/hasAuthor>

<rdfs:seeAlso> <purl.org/dc/terms/creator>

While these examples are fictitious, Listing 1 contains a fully worked example RDF document describ-
ing a dataset published by the British Oceanographic Data Centre, and linked to many remote vocabu-
lary resources. Leadbetter (2015) describes in detail the publication process for these RDF documents. 
Establishing these links can be very difficult, particularly if the datasets are large and complex, which 
is routinely the case in scientific domains. The fields of ontology alignment and co-reference resolution 
seek to develop tools and techniques to facilitate the identification of links between datasets (Euzenat 
& Shvaiko, 2007), however scientific datasets are particularly challenging for several reasons. Perhaps 
most obviously, such datasets can be extremely large. Consider climate data collected on a 1° grid – this 
results in over a petabyte of data, more than enough to swamp most existing data integration techniques. 
Additionally, scientific datasets generally have a spatiotemporal aspect, but current alignment algorithms 
struggle with finding relationships across this type of data because of the variety of ways to express 
it. For example, spatial regions can be represented by geopolitical entities (whose borders change over 
time), by the names of nearby points of interest, or by polygons whose points are given via latitude and 
longitude. Similarly, issues pertaining to measurement resolution, time zones, the international dateline, 
etc. can confuse the comparison of timestamps of data observations. Furthermore, scientific datasets 
frequently involve data of very different modalities, from audio recordings of dolphin calls to radar im-
ages of storms to spectroscopy of cellular organisms. Such data is also obviously collected at widely 
differing scales, from micrometres to kilometres. And oftentimes the data that needs to be integrated is 
from domains with only a small degree of semantic overlap, as is the case with, for example, one dataset 
containing information about NSF project awards and another with the salinity values for ocean water 
collected during oceanographic cruises, several of which were funded by NSF.

At this point we can clearly see that successfully integrating scientific datasets holds the promise of 
major advances in our knowledge of the world around us, but achieving this goal is likely to be exceed-
ingly challenging. What is the best way to start? One proposal that is gaining traction is to focus on the 
key concepts that recur frequently across many subdomains. This idea of focusing on the few similari-
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Listing 1. A fully worked example RDF document, as published by the British Oceanographic Data 
Centre within their Published Data Library. The RDF document describes the dataset, its authors, and 
how the dataset should be cited within the scientific literature.

@prefix dc1: <http://purl.org/dc/elements/1.1/> .

@prefix ns1: <http://www.opengis.net/> .

 

<https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/0c9b8ad1-

ba02-0c0e-e053-6c86abc03d26/> dc1:Period “start=1915-01-01; end=2014-12-31; 

scheme=W3C-DTF”@en; 

    dc1:bibliographicCitation “”” 

          Haigh I.D.; Wadey M.P.; Gallop S.L.; Loehr H.; Nicholls R.J.; 

Horsburgh K.J.; Brown J.; Bradshaw E. (2015). A database of 100 years (1915-

2014) of coastal flooding in the UK. British Oceanographic Data Centre - Natu-

ral Environment Research Council, UK. doi:10/zcm.”””@en; 

    dc1:contributor “Bradshaw E. “@en, 

        “Brown J. “@en, 

        “Gallop S.L. “@en, 

        “Horsburgh K.J. “@en, 

        “Loehr H. “@en, 

        “Nicholls R.J. “@en, 

        “Wadey M.P. “@en; 

    dc1:coverage <http://vocab.nerc.ac.uk/collection/C19/current/1/>,

        <http://vocab.nerc.ac.uk/collection/C19/current/1_2/>,

        <http://vocab.nerc.ac.uk/collection/C19/current/1_4/>,

        <http://vocab.nerc.ac.uk/collection/C19/current/1_5/>,

        <http://vocab.nerc.ac.uk/collection/C19/current/1_7/>;

    dc1:creator “Haigh I.D. “@en; 

    dc1:description “This database, and the accompanying website called ‘Surge-

Watch’ (http://surgewatch.stg.rlp.io), provides a systematic UK-wide record of 

high sea level and coastal flood events over the last 100 years (1915-2014). 

Derived using records from the National Tide Gauge Network, a dataset of ex-

ceedence probabilities from the Environment Agency and meteorological fields 

from the 20th Century Reanalysis, the database captures information of 96 

storm events that generated the highest sea levels around the UK since 1915. 

For each event, the database contains information about: (1) the storm that 

generated that event; (2) the sea levels recorded around the UK during the 

event; and (3) the occurrence and severity of coastal flooding as consequence 

of the event. The data are presented to be easily assessable and understand-

able to a wide range of interested parties.   The database contains 100 files; 

four CSV files and 96 PDF files. Two CSV files contain the meteorological and 

sea level data for each of the 96 events. A third file contains the list of 

the top 20 largest skew surges at each of the 40 study tide gauge site. In 

the file containing the sea level and skew surge data, the tide gauge sites 

continued on following page
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are numbered 1 to 40. A fourth accompanying CSV file lists, for reference, the 

site name and location (longitude and latitude). A description of the param-

eters in each of the four CSV files is given in the table below. There are 

also 96 separate PDF files containing the event commentaries. For each event 

these contain a concise narrative of the meteorological and sea level condi-

tions experienced during the event, and a succinct description of the evidence 

available in support of coastal flooding, with a brief account of the recorded 

consequences to people and property. In addition, these contain graphical rep-

resentation of the storm track and mean sea level pressure and wind fields at 

the time of maximum high water, the return period and skew surge magnitudes at 

sites around the UK, and a table of the date and time, offset return period, 

water level, predicted tide and skew surge for each site where the 1 in 5 year 

threshold was reached or exceeded for each event.  A detailed description of 

how the database was created is given in Haigh et al. (2015).  Coastal flooding 

caused by extreme sea levels can be devastating, with long-lasting and diverse 

consequences. The UK has a long history of severe coastal flooding. The recent 

2013-14 winter in particular, produced a sequence of some of the worst coastal 

flooding the UK has experienced in the last 100 years. At present 2.5 mil-

lion properties and £150 billion of assets are potentially exposed to coastal 

flooding. Yet despite these concerns, there is no formal, national framework 

in the UK to record flood severity and consequences and thus benefit an under-

standing of coastal flooding mechanisms and consequences. Without a systematic 

record of flood events, assessment of coastal flooding around the UK coast 

is limited.   The database was created at the School of Ocean and Earth Sci-

ence, National Oceanography Centre, University of Southampton with help from 

the Faculty of Engineering and the Environment, University of Southampton, the 

National Oceanography Centre and the British Oceanographic Data Centre. Col-

lation of the database and the development of the website was funded through 

a Natural Environment Research Council (NERC) impact acceleration grant. The 

database contributes to the objectives of UK Engineering and Physical Sciences 

Research Council (EPSRC) consortium project FLOOD Memory (EP/K013513/1).”@en; 

    dc1:format <http://vocab.nerc.ac.uk/collection/M01/current/DEL/>,

        <http://vocab.nerc.ac.uk/collection/M01/current/DOC/>;

    dc1:identifier <http://dx.doi.org/10.5285/0c9b8ad1-ba02-0c0e-e053-

6c86abc03d26>,

          <http://dx.doi.org/10/zcm>;

    dc1:language <urn:ietf:params:language:en-GB>; 

    dc1:publisher <http://www.bodc.ac.uk/>;

    dc1:relation <https://www.bodc.ac.uk/data/information_and_inventories/ed-

med/report/6120/>;

    dc1:subject <http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.

xml#MD_TopicCategoryCode_elevation,>,  <http://www.isotc211.org/2005/resourc-

es/Codelist/gmxCodelists.xml#MD_TopicCategoryCode_oceans>;

Listing 1. Continued

continued on following page
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ties that exist amidst the many differences inherent in the datasets is at the core of the ontology design 
pattern approach to data modelling and integration.

Fundamentals of ODPs

While an ODP differs in important ways from an ontology, the basic components of both are the same: 
classes, instances, and properties. A class represents a grouping of objects with similar characteristics. 
Classes are often arranged in a hierarchy using subclass relationships. For instance, Submarine may be 
a subclass of Vessel. An instance (or individual, the terms are often used interchangeably) is a particular 
object. An instance has a type that is some class within the ontology. For example, the Anorep 1 is an 
instance of type Submarine. This is somewhat analogous to classes and instances of those classes in 
object-oriented programming languages, such as Java. Relationships between instances, such as captainOf 
and hasName, are called properties. All properties are directed binary relations that map an instance with 
a type from the domain to something in the range. Properties that map an instance to another instance 
(e.g. captainOf, which may map an instance of type Person to an instance of type Vessel) are object 
properties, whereas properties that map an instance to a literal value (e.g. hasName, which maps an 
instance of type Person to a string value) are datatype properties. Common data types include integers, 
doubles, strings, and dateTime. Both object properties and data properties must involve an instance. A 
third type of property, called an annotation property, can be used to describe relationships between any 
types of entities (i.e. instances, classes or other properties). All of this information: classes, properties, 
and any restrictions on them, such as cardinality, disjointness, etc., are called the schema, or T-box (for 
terminology), of the ontology. Conversely, the instance data, or A-box (for assertions), contains assertions 
about individuals using data from the T-box. Both T-box and A-box statements are generally expressed 
using the Web Ontology Language (OWL). A more formal and extensive treatment of these topics can 
be found in Hitzler, Krotzsch, and Rudolph (2011).

While ODPs are made up of the same components as full ontologies they differ in important ways, 
the biggest of which is that an ODP focuses on only one generic notion. The OWL axiomatization of the 
ODP is carefully formulated such that no overly strong (i.e., application-specific) ontological commit-
ment is made by the pattern, in the same way that an architectural pattern for a vestibule avoids making 
constraints on the rest of the building. In comparison to a monolithic upper ontology, an ODP can be 
seen as a snippet that defines only one particular notion without the excessive semantic constraints that 
an upper ontology may entail. An analogy may be helpful here. An ODP differs from an ontology in the 
same way that a paragraph is differs from a project report. The key difference is that a good paragraph 

    dc1:title “A database of 100 years (1915-2014) of coastal flooding in the 

UK.”@en; 

    ns1:gmlid <http://www.isotc211.org/2005/resources/Codelist/gmxCodelists.

xml#MD_TopicCategoryCode_elevation,>,      <http://www.isotc211.org/2005/re-

sources/Codelist/gmxCodelists.xml#MD_TopicCategoryCode_oceans>;

Listing 1. Continued
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(and a good ODP) very tightly describes a single idea. You likely can re-use a single paragraph you write 
about some aspect of your work in many different project reports, but it’s unlikely that you can re-use 
a full project report in many different situations, simply because the complete report says too much to 
be fully reusable in different situations. This is true even if the project report is extremely well written, 
by people who are established experts in their field. However, if one writes a project report on the same 
general subject as a different report that she wrote previously, she may very well cite that other report 
in the current one, referring to it when it makes sense. This is the relationship between data integrated 
by stitching together ODPs, and existing full domain ontologies – it is generally not possible to use the 
full domain ontologies directly, but one can, and should, refer to them by creating the appropriate links.

Figure 4 shows the core of an ODP for representing an oceanographic cruise, which is defined as 
an expedition undertaken by a vessel in the ocean or other navigable water body in order to conduct 
oceanographic research activities. Cruises hold a critical role in the ocean sciences because most field 
observations, data acquisition, and scientific experiments can only be accomplished when researchers 
are on a scientific expedition. From a data integration perspective, the notion of a cruise is important 
because it acts as a type of “glue” connecting all of the data and research results resulting from activities 
carried out during an oceanographic study.

ODPs can leverage one another through axioms that formalize horizontal links between them. This 
allows applications to formally reason over the data and draw new inferences. For example, a key com-
ponent of a cruise is the path the vessel takes on its voyage. An ODP to represent a trajectory already 
existed (Hu, et al. 2013). When the cruise ODP was created, axioms to connect the relevant concepts 
within that pattern to the aforementioned trajectory pattern were specified. For example, axiom 1 shows 
that a cruise has exactly one trajectory and is undertaken by exactly one vessel.

Cruise ⊑ (=1 hasTrajectory.Trajectory) ⊓ (=1 isUndertakenBy.Vessel)  (1)

ODPs can also extend one another in order to represent different levels of abstraction. For instance, 
an oceanographic cruise is a specialization of a more general event pattern. This is shown intuitively in 
Figure 5 and specified formally in axioms 2 through 6a,b.

Cruise ⊑ Event  (2)

Figure 4. An oceanographic cruise ODP
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CruiseRoleType ⊑ RoleType  (3)

CruiseRoleType(x) for every role type x defined for the pattern  (4)

RCruise ◦ owl:topObjectProperty ◦ RCruiseRoleType ⊑ providesRoleType  (5)

Cruise ≡ ∃RCruise.Self, CruiseRoleType ≡ ∃RCruiseRoleType.Self (6a,b) 

ODPs are useful for more than just data integration. Another important benefit is their usability by 
domain scientists unfamiliar with knowledge representation and reasoning technologies. Because ODPs 
represent key concepts in a domain that recur frequently across many datasets, they can serve as semantic 
“anchors” that allow someone looking at a dataset for the first time to get conceptually oriented. The 
ability of ODPs to specialize other patterns in order to represent data at a variety of abstraction levels 
also allows individuals with different levels of understanding of the domain, such as students, to work 
with the data at a level that matches their expertise.

GeoLink: ODPs in Action

As discussed previously, understanding past and present data related to the world around us to the point 
where it is possible to actually predict aspects of its future state is extremely challenging. The earth is 
a complex and interconnected system that no one scientist, research group, or even field of study can 
hope to understand. Instead, geoscientists of all different stripes must work together to make progress: 
geologists, meteorologists, climatologists, ecologists, archaeologists, and so on. The National Science 
Foundation (NSF) has recognized this need, and in 2011 it launched the EarthCube initiative. The goal 
of this effort is to galvanize a community-driven approach to collaboration across traditional geosci-
ence domains. Rather than impose standards and infrastructure from the top down, the NSF is providing 

Figure 5. The cruise ODP as a specialization of the event ODP
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funding to various interdisciplinary teams to explore alternatives, identify the best ones, and disseminate 
those findings across the community. While this is obviously not something that can be done quickly or 
easily, the NSF has committed to seeing the effort through until at least 2022.

One of the projects funded under the EarthCube initiative is “GeoLink – Leveraging Semantics and 
Linked Data for Data Sharing and Discovery in the Geosciences”. The goal of GeoLink is to lower 
barriers to cross-repository data discovery and access, while respecting and preserving repository au-
tonomy and heterogeneity, by applying ODPs to link the repositories’ holdings. Spanning ocean, earth 
and polar sciences, GeoLink’s data providers are Rolling Deck to Repository (R2R), the Biological and 
Chemical Oceanographic Data Management Office (BCO-DMO), Integrated Earth Data Applications 
(IEDA), the Long-Term Ecological Research Network (LTER), DataONE, and the International Ocean 
Discovery Program (IODP). If a researcher could query across all of these repositories, tasks such as 
the following become feasible:

• “Find abundance data of Euphausia pacifica sampled with the MOCNESS instrument.”
• “Find all NSF awards and publications related to the location called ‘Station Papa’.”
• “Find data of all measurements of salinity taken at ‘Station Papa’ over the last 40 years.”
• “Find people who collected biodiversity data along the Gulf of Mexico.”

These tasks may seem simple on first glance, but consider a couple of features of the queries necessary 
to accomplish them. First, each of these queries involves multiple facets of the data, including measure-
ments, instruments, scientists, research themes, and time and place. Put in the language of the database 
community, there are many ‘joins’ involved, and these joins are over very different data types. Second, 
while many of these facets appear in multiple datasets, their role, prominence, and meaning within those 
datasets varies greatly. This is because each repository has a unique point of view on the domain. For 
instance, some repositories may see a notion such as ‘instrument type’ as central to their holdings, some 
as data that is potentially interesting but not required, and others may see instrument type as a detail 
that is unimportant to the community they serve. Performing queries involving facets that are ascribed 
such different roles in different datasets is a difficult challenge, and the main goal of the GeoLink effort.

As a sample case study, let us consider a vessel operator that wants to determine their organization’s 
impact on research related to a particular type of phytoplankton. In this case, the organization may want 
to issue a query such as “Find me all fluorescence data collected during research cruises on vessels 
operated by Organization A.” Such a query involves data stored in at least two repositories: R2R and 
BCO-DMO. R2R’s data schema revolves around the concept of a research cruise – what vessel sailed, 
the track of the cruise, who provided funding for the cruise, etc. Information about the data the vessel’s 
instrumentation collected is included in the R2R repository, but it is not the central focus. Conversely, 
BCO-DMO is centred on the data gathered by researchers and the instruments used to collect it. Because 
R2R gets its data from the vessel’s operating organization, when a group of researchers brings their own 
instrumentation aboard a vessel, it does not always show up in the R2R repository. The result is that, 
while the same cruises are typically represented in both R2R and BCO-DMO, these are two separate 
representations each with a different, but complementary, focus.

Completing the task described in this case study requires two subtasks: (1) finding all of the research 
cruises operated by Organization A (using the R2R repository) and all the cruises in BCO-DMO that 
involved the collection of data related to fluorescence and then (2) finding the intersection of these two 
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sets. Prior to GeoLink, this was surprisingly difficult. One challenge is that a ‘cruise’ in R2R is not called 
a ‘cruise’ in BCO-DMO; rather it is a ‘deployment’ with a ‘platform’ of type ‘vessel’. A deployment is 
defined as the activity of data collection made possible by some platform, such as a vessel, laboratory, 
aircraft, or satellite. The platform is the base from which instruments are deployed to collect data. The 
implication is that we must query R2R and BCO-DMO differently for the same concepts, due to slight 
variations in their vocabularies. Once we have the cruises from R2R involving Organization A and the 
deployments of type vessel with datasets involving fluorescence from BCO-DMO, we need to find the 
overlap between these two sets. This leads us to our second challenge: determining when a particular 
Cruise X in R2R was the same as Cruise Y in BCO-DMO. Prior to GeoLink, this was done via ad-hoc 
scripts and manual input from the owners of both ontologies.

This use case illustrates that even relatively simple queries require an alignment of both the vocabu-
laries and the instances in the relevant repositories. Arriving at the realization that a cruise in R2R is 
equivalent to a deployment on a platform of type vessel in BCO-DMO required the expertise and in-depth 
collaboration of the repository custodians. The same is true for error-free confirmation that Cruise X 
in R2R is the same as Cruise Y in BCO-DMO. This is not scalable, particularly when queries require 
data in more than two repositories.

GeoLink address this issue through the use of ontology design patterns as a mediating semantic layer 
focused on the areas of conceptual overlap between ontologies in the domain. Once the vocabularies of 
individual ontologies are aligned to these patterns (subtask 1 from the use case), automated co-reference 
resolution becomes much more accurate (subtask 2), due to the larger volume of data available about 
each item. For instance, if we know from R2R that a person with the name Michael Smith served as 
Chief Scientist on Cruise X which was funded by Organization Y, and from BCO-DMO that Cruise X 
studied ocean salinity, and from a third repository that a paper with “ocean salinity” as a keyword that 
acknowledges Organization Y as a funding source was written by M. Smith, it is highly likely that this 
author is the same Michael Smith mentioned in R2R. In this way, the GeoLink project is showing that 
ontology design patterns facilitate the alignment of vocabularies and instance data across repositories, 
even when the repositories’ views of the domain vary widely.

One potential criticism of GeoLink is that the ODP-based approach “reinvents the wheel” rather 
than leveraging the many carefully developed domain ontologies that are relevant, such as OBOE (for 
ecological observational data) (Madin, et al. 2007), OBO Foundry (a collection of open biomedical 
ontologies) (Smith, et al. 2007), O&M (for observations and measurements) (Probst, 2006), and ENVO 
(for environments) (Buttigieg, et al. 2013). The GeoLink approach is not meant to imply a negative view 
on the utility or correctness of those ontologies, but rather to merely acknowledge that wide-ranging 
domain ontologies, while useful in many situations, are quite difficult to use when integrating large and 
heterogeneous datasets such as those found in the geosciences. For instance in the OBOE ontology, if 
an observation occurred within a certain context (i.e. environment), then the entity that was observed is 
considered to also be in that context. This might not be a safe assumption for some datasets.

Of course, many individuals and applications would greatly benefit from being able to query the 
GeoLink data using terms found in established domain ontologies. For instance, existing applications 
often automatically query for instances of foaf:Person when looking for the individuals described in a 
dataset. GeoLink can respond appropriately to such queries by establishing the relevant links between its 
internal schema entities, such as gl:Person, and related concepts in external ontologies like foaf:Person. 
Care must be taken when encoding these relationships, however.
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One of the powerful aspects of linked data and ontologies is the ability to make inferences based on 
the available facts. For instance, assume that the knowledge base contains the fact that any Chief Sci-
entist must have a university degree in a scientific discipline, and that Jane Doe was the Chief Scientist 
on Cruise123. Even if there is no information about Jane Doe’s degree in the knowledge base, it can be 
inferred that she must have one. Therefore a query to the knowledge base for any people with a scientific 
degree would include Jane Doe among the results. Inferencing can also help to recognize when data has 
been entered incorrectly. One of the axioms in the Cruise ODP is that a cruise involves exactly one ves-
sel. If a single cruise has two vessels associated with it, those vessels must either actually be the same 
ship or there is a mistake in the data.

Inferences are made through a piece of software called a reasoner, and they represent one of the 
biggest benefits of the semantic web – a knowledge base that you can’t reason over is essentially just 
an “RDFized” database, to which the word “semantic” cannot be reasonably applied. However, if the 
relationships between the GeoLink design patterns and domain ontologies are specified using strong 
logical commitments such as owl:equivalentClass or rdf:subClassOf, then reasoners may behave in un-
desired ways when they are applied to the dataset. To see this, consider that a Program in GeoLink can 
be considered similar to a Project in the project management ontology PROMONT (Abels, et al. 2007). 
Furthermore, the GeoLink entities Person and PrincipleInvestigatorRole are similar to PROMONT’s 
Employee and Task. One way to represent these relationships is through the following triples:

<gl:Program> <owl:equivalentClass> <PROMONT:Project> .
<gl:Person> <owl:equivalentClass> <PROMONT:Employee> .
<gl:PrincipleInvestigatorRole> <owl:equivalentClass> <PROMONT:Task> .

Assume that Jane Doe is the Principal Investigator on both Program123 and Program456. The start 
and end dates of these programs are such that there is some overlap. Everything may work fine at first, 
but PROMONT is designed for precise project management applications. What if the developers of 
PROMONT decide to add an axiom to their ontology indicating that it is not possible for an employee 
to be working on two tasks simultaneously? An action beyond GeoLink’s control has now caused a 
logical inconsistency in the knowledge base, and a reasoner will fail. In order to avoid problems such 
as this, GeoLink plans to establish links to domain ontologies using the gl:matches predicate, as shown 
in the example below.

<gl:Program> <gl:matches> <PROMONT:Project> .

The gl:matches entity is defined very broadly to mean that two entities linked with this predicate are 
“sufficiently similar that they can be used interchangeably in some information retrieval applications.” 
Note that this is the same definition as the one for skos:closeMatch (Alexander, 1977). The difference 
is that, unlike skos:closeMatch, the gl:matches property is not defined to be associative.

With this setup, users and applications can query GeoLink for instances of PROMONT:Project by 
finding all instances of any GeoLink class that gl:matches PROMONT:Project. This level of indirection 
makes it clear to the consumer of the data that it may not be appropriate to use the GeoLink instances in 
all situations in which a PROMONT:Project is expected. This approach allows GeoLink to be queried 
using terminology familiar to domain experts while still supporting reasoning.
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Unlike traditional mission-driven science funding initiatives, the National Science Foundation funds 
hypothesis-driven research. This difference produces research quality data with varying types of hetero-
geneity in size and scope. Because of this variability, integrating datasets across NSF data repositories 
is a difficult task to achieve and scale. For the data repositories participating in the GeoLink project, 
Ontology Design Patterns, as a mediating semantic layer, have helped to integrate these heterogeneous 
data holding for producing new information and knowledge. Now that this is possible, with improved 
accuracy of the asserted shared connections and intersection points, this new knowledge can be put in 
the hands of researchers and policy makers affecting decisions related to the Earth’s ecosystems.

STREAMING LINKED DATA

It has now been seen that Linked Ocean Data can be created within design patterns which give a struc-
ture to data made available online. Traditionally, oceanographic data has been published in a post-facto 
delayed mode which improves the base archives used to develop climatologies, extend time series, and 
contribute to studies of climate change, among other activities (JCOMM, 2009). However, there has 
been a more recent push to deliver marine science data in real-time (Fredericks, 2015). Operational data 
aggregation and assembly from distributed data sources will be essential to the ability to adequately 
describe and predict the physical, chemical and biological state of the ocean. These activities demand 
a trustworthy and consistent quality description for every observation distributed as part of the global 
ocean observing system.

At the same time, the “Big Data” paradigm has been increasingly prevalent in the global consciousness. 
Big Data recognises that data are being generated at an increased volume, at a greater speed, covering 
a greater range of parameters than ever before. Activities such as the International Argo Programme 
and the Everyone’s Gliding Observatories have added to the instrumentation of the ocean which has 
vastly increased the volume of data being captured, and the platforms deployed by these programmes 
often report in real-time increasing the data velocity. Novel sensors, such as the biogeochemical sen-
sors developed within the SenseOCEAN project, are increasing the variety of the data these platforms 
collect meaning the marine science community is beginning to move into a Big Ocean Data paradigm. 
This paradigm allows the use of emerging software architecture models for the streaming of data to be 
leveraged within the ocean sciences domain. Big Data is not solely linked to the volume of data being 
processed, but also has characteristics of: “velocity”, i.e. Big Data is often available in real-time; and 
“variety”, i.e. Big Data is often complex with a number of dimensions (De Mauro, Greco, and Grimaldi 
2015). Other characteristics which are often applied to the concept of Big Data are its “veracity” which 
indicates that the quality of the source data must be considered and is vital to its effective processing; and 
the “complexity” of the data as the sources may be many and varied such that the data must be linked, 
connected, and correlated so users can grasp the information the data is supposed to convey (Hilbert 
2013). Bearing in mind both the “velocity” and the “complexity” aspects of Big Data, it can be seen 
that there is value in the exploration of streaming Linked Data from oceanographic instrumentation.

The Header-Dictionary-Triples (RDF-HDT) data structure and serialization format offers a compact 
structure for storing triples and a binary serialization of the RDF model which allows RDF datasets to 
be compressed while maintaining search and browse capabilities (Fernández, Martínez-Prieto, Gutiérrez, 
Polleres, & Arias 2013). Initially, this would seem to be the approach to follow for streaming Linked 
Ocean Data from instruments to data centres and then to the World Wide Web. However, the experiences 
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of the SenseOCEAN project have shown that there is a practical issue with attempting to deploy any extra 
software layers, such as the RDF-HDT layer, on to instruments to be deployed remotely in the marine 
environment as the bandwidth between sensor, logger and transmitter is highly limited - particularly be-
tween sensor and logger. Also the deployment of extra software for processing on autonomous platforms, 
such as Argo floats and Autonomous Underwater Vehicles which are where much of the extra volume 
of observational data in the marine sciences are collected, significantly increases the battery usage on 
those platforms and therefore reduces the length of time for which they can be deployed. In order to build 
Linked Ocean Data into a Big Ocean Data paradigm, an alternative solution must therefore be sought.

As the demand for data to be delivered in real-time from a range of internet applications, new ar-
chitectures for software processing such as the lambda- and kappa-architectures, have been developed. 
In lambda-architecture, an immutable sequence of records is captured and fed into a batch system and 
a stream processing system in parallel (Figure 6). The transformation logic is, however, implemented 
twice, once in the batch system and once in the stream processing system. Results from both systems 
are stitched together at query time to produce a complete answer (Marz and Warren, 2015). However, 
particularly in ocean science scenarios, the desired workflow is to process the data in some rapid man-
ner as close to the time of collection as possible using the a priori knowledge of the dataset, and then 
re-process once the post hoc knowledge base is increased. This fits well within the basis of the kappa-
architecture, which was proposed by Kreps (2014) as an alternative to the lambda-architecture (Figure 
7). The lambda architecture concentrates on the ability to reprocess the full data stream at a later date 
through storing the full data message queue in a message queue which allows for multiple subscribers 
(for example, Apache Kafka). When reprocessing is required, new processing job code is introduced 
to the stream processing system which can be run against the entire message queue to generate an n+1 
version of the output.

Figure 7. The kappa-architecture

Figure 6. The lambda-architecture. Example stream processing systems in the second stage include the 
Apache projects Hadoop, Samza and Storm.
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In terms of streaming Linked Data within an architecture like this, a possible approach is outlined 
below. The initial message received from the instrumentation is placed into a message queue, a process-
ing logic node converts this into a full RDF document and posts this to a new message queue. The RDF 
document is read from its message queue and parsed into its component triples, each of which are added 
to the next message queue. A final processing node reads this message queue and passes the triples to 
a SPARQL endpoint using an UPDATE command. This combination of messaging queues and nodes 
containing processing logic which subscribe to these queues is known as a “topology”. Specifically, a 
topology is a graph of computation in which the nodes represent individual functions enacted on data and 
the edges denote the pathways by which data may move between nodes. A demonstration topology has 
been created using Apache Kafka as the messaging queue and the R statistical programming language 
as the stream processing system. R has been demonstrated as an appropriate platform for processing 
Semantic Web data streams by Willighagen (2014), and the support for interfacing with Kafka from R 
is very good, using a simple Application Programming Interface to push messages to and read messages 
from a queue. The topology is outlined in Figure 8 and detailed in Listing 2.

Figure 8. An example Big Ocean Data topology for streaming Linked Ocean Data

Listing 2. An R statistical programming language encoding of the topology in Figure 8

library(rkafka)

library(elastic) 

library(rrdf) 

library(jsonlite) 

message2kafka <- function(kafkaIP, kafkaTopic, message) { 

  if (missing(kafkaIP)) { 

    stop(‘Missing input argument: kafkaIP’) 

  } else if (missing(kafkaTopic)) { 

    stop(‘Missing input argument: kafkaTopic’) 

  } else if (missing(message)) { 

    stop(‘Missing input argument: message’) 

  } else { 

    messageProducer <- rkafka.createProducer(kafkaIP) 

    rkafka.send(messageProducer, kafkaTopic, kafkaIP, message) 

    rkafka.closeProducer(messageProducer) 

continued on following page
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Listing 2. Continued
  } 

} 

kafka2r <-function(zookeeperIP, kafkaTopic) { 

  rdfConsumer <- rkafka.createConsumer(zookeeperIP,  

                                      kafkaTopic, consumerTimeoutMs = “10000”) 

  msg <- rkafka.read(rdfConsumer) 

  rkafka.closeConsumer(rdfConsumer) 

  msg 

} 

rdfmultiplex <- function(zookeeperIP, kafkaTopic) { 

  tripleInAsJSON <- “..” 

  while(tripleInAsJSON != “”) { 

    tripleInAsJSON  <-  kafka2r(zookeeperIP, kafkaTopic)  # Try Catch Loop needed here 

    tripleIn <- fromJSON(tripleInAsJSON) 

    print(tripleIn) 

  } 

} 

rdfxmlfile2kafka <- function(fileName, kafkaIP, kafkaTopic) { 

  if (file.exists(fileName)) { 

    rawRdfXml  <-  readChar(fileName, file.info(fileName)$size) 

    message2kafka(kafkaIP, kafkaTopic, rawRdfXml) 

  } else { 

    stop(‘Specified input file does not exist’) 

  } 

} 

rdf2triples <-function(formatRDF, zookeeperIP,  

                       kafkaInTopic, kafkaIP, kafkaOutTopic) { 

  rdfXmlStr <- kafka2r(zookeeperIP, kafkaInTopic) 

  tripleStore <- new.rdf(ontology = FALSE) 

  fromString.rdf(toString(rdfXmlStr), formatRDF, appendTo = tripleStore) 

  triples <- sparql.rdf(tripleStore, “select * where {?a ?b ?c}”) 

  for (i in 1:nrow(triples)) { 

    jsonTriples <- (paste0(‘{”s”: “‘, unname(triples[i, 1]), ‘”, “p”: “‘,  

                 unname(triples[i, 2]), ‘”, “o”: “‘,  

                 unname(triples[i, 3]), ‘”}’)) 

    message2kafka(kafkaIP,kafkaOutTopic,jsonTriples) 

  } 

} 

# read an XML file into Kafka 

rdfxmlfile2kafka(‘~/rdf/oa_overlay.xml’, ‘localhost:9092’, ‘rawrdfxml’) 

# Read the RDF/XML from Kafka and create a series of RDF triples 

rdf2triples(‘RDF/XML’, ‘localhost:2181’, ‘rawrdfxml’, ‘localhost:9092’, ‘rdftriples’) 

# Multiplex the RDF Triples 

rdfmultiplex(‘localhost:2181’,’rdftriples’)
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The topology shown in Figure 8 takes raw oceanographic instrument output, normally as text over 
a serial port, as its inputs (to the far left of the image within Figure 8). A script, for example written in 
Python or R, listens to the port over which the instrument is streaming its outputs and these are pushed 
to the Kafka messaging queue. The R topology reads the raw data from the message queues for each 
instrument and converts the full reading to an RDF XML document which is pushed onto a combined 
message queue for each instrument. The R topology then reads each of these documents and breaks 
them down into the component triples, each of which are passed on to a new message queue. The final 
node of the R topology takes the triples in turn and issues SPARQL update queries to push them on to 
a SPARQL endpoint. This topology has been successfully tested on local desktop machines in batch 
mode in order to prove the validity of the concept as far as the input to the SPARQL endpoint, but it 
remains to be proven in a production environment outside of a batch processing mode. However, the 
careful preparation of the data into a standardised structure for use in data intensive science supports 
the concept of High Performance Data as proposed by Evans et al. (2015).

One such standardised structure is the Observations & Measurements (O&M) model (Cox, 2006) 
which is both an International Organization for Standardization (ISO) and Open Geospatial Consortium 
(OGC) standard which defines a conceptual schema encoding for observations, and for features involved 
in sampling when making observations. The OGC make specific use of O&M in their Sensor Web En-
ablement standards suite, where it provides the response model for the Sensor Observation Service. In 
this case, Sensor Web Enablement and Sensor Observation Services are of particular interest as they are 
intended, respectively, to make sensors discoverable, accessible and usable and to query both real-time 
and time-series sensor data via the Web. However, one drawback has been the reliance on the service 
response documents being delivered via eXstensible Markup Language (XML) documents, which are 
heavy-weight for use in real-time systems and are not favoured by web developers looking to build re-
sponsive user interfaces. One option is to use JavaScript Object Notation as an alternative to XML as it 
is a lighter-weight document meaning quicker response times from applications and easier development 
of interfaces. As Tim Bray noted in 2013 “… these days, if you want to interchange tuples or tables of 
tuples or numbers and strings, you have JSON. If you want to do nontrivial publishing automation, use 
XML. If you want to interchange smart bitmaps of page images, there’s PDF. I personally think we’re 
probably done with inventing low-level textual interchange formats” (Bray, 2013).

One barrier to this has been the lack of either a formal schema for JSON to allow the validation of 
a JSON document and an Observations & Measurements encoding for JSON. The first issue has been 
addressed by the emergence and coming to maturity of JSON Schema (Galiegue, Zyp, & Court, 2013) 
specifies a JSON-based format to define the structure of JSON data for validation, documentation, and 
interaction control. The second barrier is overcome by the publication of a JSON Schema for O&M 
(OM-JSON; Cox & Taylor, 2015). This allows for a JSON object to be created containing the full O&M 
data model, and to be validated using the appropriate JSON Schema. This is of particular interest in the 
Linked Ocean Data space, as OM-JSON specifies that such properties as: the Observed Property; the 
Procedure; the Feature of Interest; and the Units of Measure are all defined by HTTP URIs. Therefore 
OM-JSON is immediately Linked Data at one level or another, all the more so if common controlled 
vocabularies, such as the NERC Vocabulary Server, are used to provide the URIs to such resources (see 
Listing 3).

The example OM-JSON encoding shown in Listing 3 is from an experimental Sensor Observation 
Service instance which takes JSON feeds from instruments deployed within the marine environment, 
and maps these data onto the O&M data model (Irish Marine Institute, n.d.). A further step towards 
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Listing 3. An example of schema compliant OM-JSON created from a lightweight, experimental Sensor 
Observation Service.

{ 

  “foi”: { 

    “href”: “http://example.marine.ie/feature/galwayBayCableObservatory”

  }, 

  “id”: “http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90”,

  “member”: [ { 

    “id”: “Temp”, 

    “observedProperty”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/P01/current/TEMPPR01/”

    }, 

    “procedure”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/L22/current/TOOL0861/”

    }, 

    “result”: { 

      “uom”: “http://vocab.nerc.ac.uk/collection/P06/current/UPAA/”,

      “value”: 13.988 

    }, 

    “resultTime”: “2015-10-12T15:33:44Z”, 

    “type”: “Measurement” 

  }, { 

    “id”: “Sal”, 

    “observedProperty”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/P01/current/PSALCU01/”

    }, 

    “procedure”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/L22/current/TOOL0861/”

    }, 

    “result”: { 

      “uom”: “http://vocab.nerc.ac.uk/collection/P06/current/UUUU/”,

      “value”: 34.775 

    }, 

    “resultTime”: “2015-10-12T15:33:44Z”, 

    “type”: “Measurement” 

  }, { 

    “id”: “Press”, 

    “observedProperty”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/P07/current/CFSN0330/”

    }, 

    “procedure”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/L22/current/TOOL0861/”

    }, 
continued on following page
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Listing 3. Continued

    “result”: { 

      “uom”: “http://vocab.nerc.ac.uk/collection/P06/current/UPDB/”,

      “value”: 27.7 

    }, 

    “resultTime”: “2015-10-12T15:33:44Z”, 

    “type”: “Measurement” 

  }, { 

    “id”: “SoundV”, 

    “observedProperty”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/P01/current/SVELCV01/”

    }, 

    “procedure”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/L22/current/TOOL0861/”

    }, 

    “result”: { 

      “uom”: “http://vocab.nerc.ac.uk/collection/P06/current/UVAA/”,

      “value”: 1503.6205 

    }, 

    “resultTime”: “2015-10-12T15:33:44Z”, 

    “type”: “Measurement” 

  }, { 

    “id”: “Press”, 

    “observedProperty”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/P01/current/CNDCST01/”

    }, 

    “procedure”: { 

      “href”: “http://vocab.nerc.ac.uk/collection/L22/current/TOOL0861/”

    }, 

    “result”: { 

      “uom”: “http://vocab.nerc.ac.uk/collection/P06/current/UECA/”,

      “value”: 41.694 

    }, 

    “resultTime”: “2015-10-12T15:33:44Z”, 

    “type”: “Measurement” 

  } ], 

  “phenomenonTime”: { 

    “instant”: “2015-10-12T15:33:44Z” 

  } 

}
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making such an OM-JSON file 5-star Linked Data would be to overlay JSON-LD patterns on the OM-
JSON. JSON-LD is a method of transporting Linked Data using JSON. JSON-LD is designed around 
the concept of a “context” to provide additional mappings from JSON to an RDF model. The context 
links object properties in a JSON document to concepts in an ontology. In order to map the JSON-LD 
syntax to RDF, JSON-LD allows values to be coerced to a specified type or to be tagged with a language. 
A context can be embedded directly in a JSON-LD document or put into a separate file and referenced 
from different documents (from traditional JSON documents via an HTTP Link header). As an ontology 
for O&M already exists in OWL (Cox, 2013) it is possible to do this for OM-JSON by inserting URIs 
from the O&M ontology into the OM-JSON context. One strategy for creating an OM-JSON context 
is given in Listing 4. In order to show the knowledge encapsulated by combing Listing 3 and Listing 4, 
Listing 5 shows the RDF graph inferred through overlaying the JSON-LD context of Listing 4 on to the 
OM-JSON of Listing 3.

FUTURE RESEARCH DIRECTIONS

The solutions outlined above to “Born Semantic” data are as yet only prototypes and have neither been 
used in a production environment nor, in keeping with the Big Data paradigm, have they been shown to 
scale. The next steps in their development should be to remove the reliance on an intermediate platform 

Listing 4. A possible strategy for creating a truly Linked Data Sensor Observation Service involves the 
output in Listing 3 overlain with a JSON-LD Context document of the type shown here.

“@context”: { 

    “observedProperty”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#observedProperty”,

    “href”: “@id”, 

    “foi”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#featureOfInterest”,

    “id”: “@id”, 

    “phenomenonTime”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#phenomenonTime”,

    “instant”: “@value”, 

    “member”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/observation#

relatedObservation”,

    “procedure”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#Process”,

    “resultTime”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#resultTime”,

    “result”: “http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#result”,

    “value”: “@value” 

  }
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Listing 5. The RDF graph inferred by overlaying the OM-JSON of Listing 3 with the JSON-LD context 
of Listing 4.

<http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90> <http://def.

seegrid.csiro.au/isotc211/iso19156/2011/observation#featureOfInterest> <http://

example.marine.ie/feature/galwayBayCableObservatory> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#phenomenonTime> “2015-10-12T15:33:44Z” ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#relatedObservation> < http://example.marine.ie/ctd/Idronaut/3137/

b457-a9c72a392d90/Press>, < http://example.marine.ie/ctd/Idronaut/3137/

b457-a9c72a392d90/Sal>, < http://example.marine.ie/ctd/Idronaut/3137/b457-

a9c72a392d90/SoundV>, < http://example.marine.ie/ctd/Idronaut/3137/b457-

a9c72a392d90/Temp> .

 

< http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90/Press> <http://

def.seegrid.csiro.au/isotc211/iso19156/2011/observation#Process> <http://vo-

cab.nerc.ac.uk/collection/L22/current/TOOL0861/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#observedProperty> <http://vocab.nerc.ac.uk/collection/P01/current/

CNDCST01/>, <http://vocab.nerc.ac.uk/collection/P07/current/CFSN0330/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#result> “2.77E1”^^<http://www.w3.org/2001/XMLSchema#double>, 

“4.1694E1”^^<http://www.w3.org/2001/XMLSchema#double> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#resultTime> “2015-10-12T15:33:44Z” .

 

< http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90/Sal> <http://

def.seegrid.csiro.au/isotc211/iso19156/2011/observation#Process> <http://vo-

cab.nerc.ac.uk/collection/L22/current/TOOL0861/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#observedProperty> <http://vocab.nerc.ac.uk/collection/P01/current/

PSALCU01/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#result> “3.4775E1”^^<http://www.w3.org/2001/XMLSchema#double> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#resultTime> “2015-10-12T15:33:44Z” .

 

< http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90/SoundV> <http://

def.seegrid.csiro.au/isotc211/iso19156/2011/observation#Process> <http://vo-

cab.nerc.ac.uk/collection/L22/current/TOOL0861/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#observedProperty> <http://vocab.nerc.ac.uk/collection/P01/current/

SVELCV01/> ;
continued on following page
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such as R for the encoding of the nodes of the topology, and the code should be moved out to either a 
more formal programming language (such as Java or Go) or to a dedicated stream processing platform 
such either Spark or Storm from the Apache Software Foundation.

Similarly, the High Performance Datasets described above are of low-volume, but only of a medium 
complexity. As the creation of terabyte scale ocean datasets becomes much more prevalent, the question 
of converting ‘Big Data’ sets that comprise thousands of individual heterogeneous files (e.g., bathymetry 
data sets) into ‘High Performance Data’ (HPD) sets that can be accessed in High Performance Computing 
environments becomes much more relevant. This is a known problem where both climate and oceans 
modellers want access to national scale, calibrated higher resolution bathymetry data sets, as reported by 
the Australian National University to the September 2015 Ocean Data Interoperability Platform work-
shop. A related Big Data issue relevant to sustainable development of the coastline is the merging the 
high resolution LiDAR data sets (in LAS formats) with shallow water bathymetry (in CARIS, ASCII, 
ESRI Grid, or possibly a well-managed netCDF flavour) to create high resolution coastal elevation data 
sets for accurate tsunami and storm surge modelling. These remain open research issues.

Further, the extension of Observations and Measurements through application schema is a well-
known through domain specialization (Cox, 2013). However, in the past this has mainly been through 
an informal use of common feature-type catalogues; sensor registers; parameter dictionaries; and result 
formats for a given domain. As shown by Diviacco and Leadbetter (2016, see chapter X this volume) 
this does not lead to a sustainable development paradigm. However, the lightweight formalisation of 
the JSON schema approach as used in OM-JSON is already being extended by the Ocean Acidification 
community in a more formalised way, and future research will determine if this presents a better route 
for the extension of these core data models.

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#result> “1.5036205E3”^^<http://www.w3.org/2001/XMLSchema#double> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#resultTime> “2015-10-12T15:33:44Z” .

 

< http://example.marine.ie/ctd/Idronaut/3137/b457-a9c72a392d90/Temp> <http://

def.seegrid.csiro.au/isotc211/iso19156/2011/observation#Process> <http://vo-

cab.nerc.ac.uk/collection/L22/current/TOOL0861/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#observedProperty> <http://vocab.nerc.ac.uk/collection/P01/current/

TEMPPR01/> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#result> “1.3988E1”^^<http://www.w3.org/2001/XMLSchema#double> ;

     <http://def.seegrid.csiro.au/isotc211/iso19156/2011/

observation#resultTime> “2015-10-12T15:33:44Z” .

Listing 5. Continued
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CONCLUSION

In this chapter, we have seen how the concept of Linked Ocean Data is exploiting the potential of third 
generation World Wide Web technology, specifically the Semantic Web and Linked Data, to provide 
interconnections between datasets published online. For sustainable development of the marine envi-
ronment, where a holistic view of the marine system is required, Linked Data approaches allow for 
the easier integration of new data sources, particularly where relevant Ontology Design Patterns have 
been published and Linked Data can be created to those patterns. Finally, the emergence of Big Data 
streaming systems with small chunks of processing logic placed between fully re-analysable message 
queues presents a solution to the question of data being “Born Semantic” or “Born Linked” allowing 
new observations of the marine environment to be connected to the Linked Ocean Data cloud from the 
moment they are captured. Through the emergence of OM-JSON, the Born Semantic data can also be 
compliant with standards for accessing sensor observations through Web interfaces.
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KEY TERMS AND DEFINITIONS

Big Data: Big Data can be simply defined as “having more data than I had yesterday, and not know-
ing what to do with it”. Key aspects of Big Data are the data volume; the speed of data production and 
transfer (its velocity); and the wide variety of data types introduced.

Big Ocean Data: An application of the ideas of Big Data specifically to the marine science domain.
Controlled Vocabulary: A controlled vocabulary provides a way to organise knowledge for subse-

quent retrieval. Vocabularies are used in subject indexing schemes, subject headings, and their content 
can be organised hierarchically to create thesauri, taxonomies and other forms of knowledge organiza-
tion systems. Controlled vocabulary schemes mandate the use of predefined, authorised terms that have 
been preselected by the individual or group governing the vocabulary, in contrast to natural language 
vocabularies where no such restriction is put in place.

Linked Data: Linked Data is a technique that uses the Word Wide Web to connect related data that 
was not previously linked, or uses the Web to lower the barriers to linking data which are currently linked 
using other methods. In practice, Linked Data often uses the Resource Description Framework model 
and Web addresses (as Uniform Resource Locators, or URLs) to achieve these linkages.

Linked Ocean Data: A subset of Linked Data, with a specific focus on the marine science domain.
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Ontology: In computer science, an ontology formally represents knowledge as a hierarchy of con-
cepts within a domain, using a shared vocabulary to denote the types, properties and interrelationships 
of those concepts. 

Ontology Design Pattern: An Ontology Design Pattern is a reusable solution to a data modelling 
problem that commonly occurs across many different domains or within a wide variety of contexts 
within a single domain.

Resource Description Framework (RDF): RDF is a standard model for the exchange of data over 
the World Wide Web. The RDF data model is based upon the idea of making statements about resources 
in the form of subject-predicate-object expressions, known as triples. A classic example of a subject-
predicate-object triple is “sky”-”has colour”-”blue”.

Semantic Web: The Semantic Web is the World Wide Web of data built on the Resource Description 
Framework model as a foundation for publishing and linking data online.

Streaming Data: Streaming data is an analytic computing paradigm that is focused on speed of 
throughput of data.

Topology: In the context of processing streams of data, a topology is a graph of computation. Each 
node in the graph contains the processing logic and the graph’s edges (or connections between the nodes) 
indicate the pathways of data between the nodes.


