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Abstract Studying the surface water systems of the earth is important for
many fields, from biology to agriculture to tourism. Much of the data rele-
vant to surface water systems is stored in isolated repositories that interface
with different ontologies, such as the US Geological Survey’s Surface Water
Ontology or the Environment Ontology (ENVO). Effectively using this data
requires integrating the ontologies so that the data can be seamlessly queried
and analyzed. Automated alignment algorithms exist to facilitate this data
integration challenge. In this paper we examine the utility of two leading auto-
mated alignment systems to integrate four pairs of ontologies from the surface
water domain. We show that the performance of such systems in this domain
lags behind their results on popular benchmarks, and therefore incorporate
the alignment task described here into the set of benchmarks used by the
alignment community. We also show that, with minor modifications, existing
alignment algorithms can be used effectively within a semi-automated system
for the surface water domain. In addition, we analyze the unique challenges of
this domain with respect to data integration and discuss possible solutions to
pursue in order to address these challenges.

Keywords Complex ontology alignment · Schema alignment · Surface water
ontologies · Semantic data integration · OAEI

M. Cheatham
Wright State University 3640 Colonel Glenn Hwy. Dayton, OH 45435 USA
Tel.: +01-937-343-1429
Fax: +01-937-775-5009
E-mail: michelle.cheatham@wright.edu

D. Varanka
U.S. Geological Survey 1400 Independence Road Rolla, MO 65401 USA

F. Arauz
Wright State University 3640 Colonel Glenn Hwy. Dayton, OH 45435 USA

L. Zhou
Wright State University 3640 Colonel Glenn Hwy. Dayton, OH 45435 USA



2 Michelle Cheatham et al.

1 Introduction

Much of the earth’s surface is covered by water, and so various research organi-
zations around the globe have data related to surface water features stored in
data repositories. Of course, the earth’s water is an inherently interconnected
system, and more powerful analyses of this data could be conducted if these in-
dividual data repositories could be queried or otherwise accessed in a uniform
manner. Two things standing in the way of integrating these data silos are syn-
tactic differences between different datasets and semantic heterogeneity. The
syntactic differences are currently being addressed through the application
of semantic web protocols, such as using HTTP uniform resource identifiers
(URIs) to represent entities, encoding information about those entities in the
Resource Description Framework (RDF), and providing links between related
entities [5]. These technologies are moving towards widespread acceptance, as
evidenced by the growth of the Linked Data Cloud [1]. However, semantic
heterogeneity remains a challenge.

Data within repositories is organized according to some vocabulary, or
schema. In the case of the Semantic Web, these schemas generally take the
form of an ontology. There are many ontologies related to the surface water
domain [11,28]. Four of these: the US Geological Survey’s Surface Water On-
tology, the Hydro3 module from the University of Maine’s HydroGazetteer, the
Cree surface water ontology, and the Spanish National Geographic Institute’s
hydrOntology, are discussed in detail in Section 3. Other ontologies contain
some entities that are related to surface water features but are overall more
general in scope, such as ENVO [6] and SWEET [26].

Engineering ontologies is not a deterministic process – many design deci-
sions must be made, and the designers’ backgrounds and the application they
are targeting will influence their decisions in different ways. The end result is
that even two ontologies that represent the same domain will not be identical.
They may use synonyms for the same concept or the same word for different
concepts, they may be at different levels of abstraction, they may not include
all of the same concepts, and they may not even be in the same language.
As a specific example, the United States Geological Survey (USGS) considers
surface water features from the perspective of the Earth’s terrain and the wa-
ter bodies and flows between them that the geography induces. On the other
hand, the conceptualization of surface water features by the indigenous Cree-
speaking people of Northern Canada is based on their utility for transportation
via canoe and is therefore largely focused on water bodies’ locations relative to
one another. These different viewpoints mean that these two ontologies have
many low-level classes in common (e.g. River, Pond, Swamp), but the class
hierarchies look very different because water bodies are considered “similiar”
for different reasons.

Semantic heterogeneity can sometimes be resolved by aligning the different
ontologies. The goal of ontology alignment is to determine when an entity in
one ontology is semantically related to an entity in another ontology. Ontology
alignment is an important part of realizing the potential of the Semantic Web.



Alignment of Surface Water Ontologies 3

Alignments between two ontologies can be used to browse a combined data
set according to either ontology’s vocabulary, to federate search queries, to
perform logical reasoning across multiple domains, and other important tasks.
While some of these applications require high-quality alignments that must be
created manually, which often takes weeks even for small ontologies, some uses
can benefit from automated alignment that sacrifice some accuracy in favor
of timely results. Examples include identifying other data repositories that
are related to an existing one and finding linking points for modular ontology
development [17].

The overall goal of this paper is to assess the utility of automated alignment
systems on real-world ontology alignment tasks from the surface water domain.
The paper makes the following contributions:

– A revised version of the USGS Surface Water Ontology (SWO) is presented.
– Manual alignments between three existing surface water ontologies and

the new version of the SWO have been created. These alignments consti-
tute a new benchmark within the annual Ontology Alignment Evaluation
Initiative as of 2018.

– The performance of two state of the art ontology alignment systems on this
benchmark is examined in detail, with a focus on how aspects relevant to
the surface water domain pose unique challenges.

– A modified version of an existing alignment system that performs signifi-
cantly better than the original in this domain is presented.

– Potential avenues to address the alignment challenges raised by surface
water ontologies are discussed.

2 Background and Related Work

An ontology is a way to model the semantics of a domain of study. An on-
tology is typically expressed in a formal language, such as the Web Ontology
Language (OWL). It contains classes to represent types of things in the do-
main of interest, individuals that are specific things, and properties, which are
relationships that hold between two things, or between a thing and a value.
For example, in the ontology on the left in Figure 1, the items in the yellow
squares, including PointOfInterest, Waterbody, and Gulf, are classes. The ar-
row labeled flowsInto represents an object property (i.e. a relation that holds
between two individuals that both belong to a class, in this class River is the
domain of the relation and Gulf is the range) and the arrows labeled has-
Name and hasLengthInKm represent data properties, which hold between an
individual and a literal value.

The information shown in Figure 1 comprises the schema, or T-box, of the
ontologies. In addition, an ontology often contains instance data. For exam-
ple, the following statements indicate that there are instances called Missis-
sippi River and Gulf Of Mexico that are of type River and Gulf, respectively,
that the Mississippi River flowsInto the Gulf of Mexico, and that it hasLeng-
thInKm 3730.
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Fig. 1 Two sample ontologies. Differences in scope and granularity create alignment chal-
lenges.

ont1:Mississippi_River rdf:type ont1:River

ont1:Gulf_Of_Mexico rdf:type ont1:Gulf

ont1:Mississippi_River ont1:flowsInto ont1:Gulf_Of_Mexico

ont1:Mississippi_River ont1:hasLengthInKm 3730

As mentioned previously, the goal of ontology alignment is to determine
when an entity in one ontology is semantically related to an entity in another
ontology. Continuing the example from Figure 1, the ontology on the left has
a class called Gulf that does not exist in the one on the right. However, a Gulf
is defined by Wikipedia and other general knowledge sources as a large inlet
or bay. An alignment could indicate this relationship by stating that Gulf is a
subclass of the union of Inlet and Bay. A comprehensive discussion on ontology
alignment is outside the scope of this paper, but a more detailed explanation
can be found in [14].

An automated alignment algorithm takes as input two ontologies and pro-
duces a set of matches consisting of a URI specifying one entity from each
ontology, a relationship, and an optional confidence value that is generally
in the range of 0 to 1, inclusive. In order to produce this output, automated
alignment systems generally employ one or more similarity metrics that de-
termine the type and strength of relationship between two or more entities.
These similarity metrics typically fall into one of three groups: syntactic, se-
mantic, and structural. Syntactic metrics compare entities from each of the
ontologies to be aligned based on strings associated with the entities. The
strings are generally the entity label, but can also include comments or other
annotations of the entity. Referring to the alignment problem in Figure 1, a
syntactic metric would likely align the classes Waterbody and BodyOfWater,
in addition to the properties, which have syntactically identical labels. Seman-
tic similarity metrics attempt to use the meanings of entity labels rather than
their spellings. External resources such as thesauri, dictionaries, encyclope-
dias, and web search engines are often used to calculate semantic similarity.
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A semantic metric might be able to detect that a Gulf is related to an Inlet
or Bay by looking up the term Gulf in an electronic dictionary. Structural
techniques consider the neighborhoods of two entities when determining their
similarity. For instance, two entities with the same superclass that share some
common instances are considered more similar than entities that do not have
these things in common. Graph matching techniques are often used for this. In
our example, River might be scored as fairly similar to Waterflow because it is
the domain of two properties that have already been matched via a syntactic
metric. An alignment system may use zero or more of each type of similar-
ity metric. The values from multiple approaches may be combined to form a
single measure of similarity, or they may be used in a serial fashion to filter
potential matches down to the most likely candidates. At some point, a final
list of related entities is generated, frequently by including any matches with a
confidence (similarity) value higher than some threshold. Additionally, align-
ment systems may use some form of inconsistency checking and repair after
the matching process in order to ensure a merged ontology produced using the
alignment is logically consistent. More detail about ontology matching systems
can be found in Euzenat and Shvaiko’s book on the subject [14].

Ontology alignment is a well established field. There are dozens of auto-
mated alignment systems (see [14] and [24] for surveys), and an annual on-
tology alignment evaluation initiative (OAEI) for these systems to compare
their performance on benchmark alignment tasks.1 Ideally, alignment systems
should be able to uncover any entity relationships across two ontologies that
can exist within a single ontology. Such relationships have a wide range of
complexity, as shown in Figure 2. Nearly all existing alignment systems fall at
the simplest end of the scale. A few systems, including ASMOV [19], RiMoM
[22], BLOOMS [18] and PARIS [30], attempt to identify subsumption relation-
ships across ontologies. CSR [29] and TaxoMap [16] attempt to find 1-to-many
equivalence and subsumption relationships. In general though, most research
activity in the field of ontology alignment remains focused on finding 1-to-1
equivalence relations. This limitation was mentioned in 2013 [27] and again in
2017 [9] as a challenge for the field. One reason for the lack of systems that
attempt to find more complex matches may be that current benchmarks have
not historically contained any complex relations. This is changing, however –
the surface water alignment task described in this paper has been accepted as
part of a new OAEI complex alignment track as of 2018.2

In this work we analyze the performance of two of the best performing
automated alignment systems from the OAEI on the task of aligning surface
water ontologies. While many ontologies exist to model surface water features
(these are surveyed in Section 3), this is to the best of our knowledge the first
time that the performance of automated alignment systems has been evaluated
on this domain.

1 http://oaei.ontologymatching.org
2 http://oaei.ontologymatching.org/2018/complex/index.html
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Fig. 2 Spectrum of alignment complexity. The x:y notation refers to the number of entities
from the first ontology (x) and the number from the second ontology (y) that are involved
in a particular mapping across the ontologies.

If we look more broadly at aligning geographical ontologies in general, we
find more related work. Much of this involves using semi-automated approaches
to create alignments at the bottom of the complexity spectrum shown in Fig-
ure 2. For example, the Geodint project aligned several ontologies related to
geographic points of interest, including Facebook Places, Foursquare, and DB-
pedia using COMA++, a visually oriented semi-automatic alignment system
[23]. Sunna and Cruz focus on structure-based similarity metrics to align on-
tologies related to wetlands [31]. A paper describing the G-MAP alignment
system mentions the ability to identify complex relations, but it defines com-
plex as relations between properties rather than classes [4]. These relations are
still 1-to-1 and would therefore not be considered complex as defined in this
paper. As we will see in Section 4, most of the relations of interest between
the surface water ontologies used in this study are 1-to-many in nature.

Another common theme in research related to alignment of geospatial on-
tologies is extensional matching [10,12,13,7]. Extensional matchers begin by
trying to determine when two instances represent the same spatial feature. For
example, they may try to determine that Mississippi River in one ontology is
equivalent to Greater Mississippi Rvr in another ontology, often based on the
coordinates associated with each entity. They can then use these instance-level
matches to find schema-level relations, for example by using inductive infer-
encing. The work presented here differs in that it does not assume instance
level data exists in both ontologies being aligned.
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3 Surface Water Ontologies

As mentioned previously, there are many existing ontologies relevant to the
surface water domain. The USGS SWO was chosen as a focal point for this
work because it is the domain ontology with which the authors have the most
familiarity. The other three ontologies discussed in this section were chosen
to create a spectrum of difficulty level regarding the alignment task: Hydro3
is similar to the SWO in terms of both organization and language, the hy-
drOntology has a similar organization but is in a different language, and the
Cree ontology differs greatly from the SWO in terms of both organization and
language. In this work each of these ontologies (Hydro3, hydrOntology and
Cree) will be aligned to the SWO. These nature of these ontology pairs allows
us to evaluate the performance of automated alignment systems on a range of
real-world hydrographic ontology alignment tasks.

3.1 USGS Surface Water Ontology

In 2001, as part of its National Map project, the US Geological Survey (USGS)
began development of the National Hydrography Dataset. The dataset consists
of surveys conducted both in the field and from aerial photographs of surface
water features across the United States and is maintained via edits and addi-
tions submitted by the individual states. The NHD was originally stored in a
relational database, but in 2014 the data was also made available as an RDF
triplestore. As part of this process, the USGS developed the SWO, which was
originally presented in [33]. The SWO was initially designed to closely follow
the underlying relational database. Our goal with this revision was to make it
more broadly applicable to other hydrographic datasets.

Fig. 3 The upper levels of the SWO class and property hierarchy
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The changes made to the ontology in this revision fall into three general
categories. First, the modeling of hydrographic measurements was fleshed out.
The original ontology represents the taking of a hydrographic measurement via
a class called Gaging, which is a subclass of Event. There are also classes to rep-
resent what was measured (e.g. SpatialQuality and its subclasses such as Area
and Length) and the value and unit of the measurement (e.g. SpatialMeasure-
ment). This version retains that basic model, but adds new object properties
such as isMeasurementOfFeature, measuresSpatialQuality, producedMeasure-
ment, and takenAtStage to fully relate a measurement to the SpatialQuality
and HydrographicFeature being measured and to capture the corresponding
provenance information, including the WaterStage of the HydrographicFea-
ture during the measurement (represented as a controlled vocabulary using
the OWLOneOf construct, in order to force consensus on this aspect of the
measurement, which is key to understanding the context of the data). The sec-
ond group of changes involved the creation of an abstract layer in the ontology
(shown in Figure 3), which contains the upper levels of the class and property
hierarchy. This layer is important both because it enables the SWO to apply
in many more applications involving surface water features and because the
more concrete features in the ontology are often defined in terms of this layer.
Finally, specific hydrographic features, such as seas, rivers, dams, and shore-
lines are now defined using axioms that relate a concept to others within the
ontology, often from the abstract layer. These axioms range from relatively
simple, such as that a shore is something that bounds a body of water

SubClassOf(swo:Shore swo:BoundingFeature)

or that a sea or ocean is a perennial waterbody

SubClassOf(swo:SeaOrOcean swo:Waterbody

ObjectHasValue(swo:hasTemporality swo:Perennial))

to more complex, such as that an estuary must adjoin both a sea or ocean and
a shore.

SubClassOf(swo:Estuary OWLIntersectionOf(swo:Waterbody

ObjectSomeValuesFrom(swo:adjoins swo:SeaOrOcean)

ObjectSomeValuesFrom(swo:adjoins swo:Shore))

3.2 Hydro3

An ontology called HydroGazetteer was developed by individuals at the Uni-
versity of Maine in order to support expanded gazetteer functions using topol-
ogy and semantic inference [34]. The Hydro3 module of this ontology, shown
in Figure 4, overlaps significantly with the SWO.
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Fig. 4 The Hydro3 module within the HydroGazetteer ontology

3.3 Cree

The Cree surface water ontology is described in [36]. Cree is a language spoken
by some of the native inhabitants of northern Canada. This region is densely
covered with surface water features, and Cree speakers have a very rich vocab-
ulary to describe them. Many Cree terms do not have a direct translation into
English. The authors of [36] worked with native speakers in order to establish
an ontology of Cree surface water features, along with English descriptions.
The classes in this ontology are shown in Figure 5. The Cree speakers do not
have a hierarchical view of different types of water bodies, so the ontology is
very flat and does not contain any abstract notions.

3.4 hydrOntology

Another non-English hydrography ontology is the hydrOntology, which was
developed by the Spanish National Geographic Institute (IGN) [35]. The hy-
drOntology was originally created to assist Spanish cartographers in coordi-
nating their products, and has since been expanded into a complete hydro-
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Fig. 5 The classes within the Cree ontology. Class groupings (e.g. Still Waterbodies, Con-
nections) have been added for convenience and are not part of the ontology.

graphic domain ontology. The ontology’s design was informed by numerous
feature catalogs, including those of the IGN, the European Water Framework
Directive, and the Alexandria Digital Library, as well as by several geographic
data repositories owned by the IGN. Like the SWO, the hydrOntology can be
thought of as two layers: one describing the relationships among abstract hy-
drographic concepts and the other containing concrete hydrographic features
that are generally defined in terms of their relation to one or more of the ab-
stract concepts. The upper layer is shown in Figure 6. The properties in the
hydrOntology are largely similar to that of the SWO, but they have extensive
domain and range restrictions involving classes in the concrete layer of the
ontology, while the SWO has few of these.

Table 1 presents some basic characteristics of the ontologies described in this
section. In comparison to other ontology alignment benchmarks, the surface
water ontologies presented here have some characteristics that pose different
challenges and possibilities for automated alignment systems. Existing bench-
marks primarily involve ontologies related to either conference organization or
the life sciences (e.g. anatomy, diseases, biodiversity, and ecology).3 In compar-
ison to the ontologies that make up those alignment tasks, the surface water
ontologies presented here vary more in their level of granularity. For example,
the SWO has a single class that represents a lake while the Cree ontology has
classes to represent nine different types of lakes, and these classes do not all

3 http://oaei.ontologymatching.org/2018/
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Fig. 6 The upper levels of the hydrOntology class hierarchy

Table 1 Number of entities within the chosen ontologies

SWO Hydro3 hydrOntology Cree

Classes 85 22 154 83
Object Properties 20 34 47 21
Data Properties 1 0 75 7

share a common ancestor in the class hierarchy. This is likely to cause trouble
for alignment systems that heavily employ structural similarity metrics or on
identifying a fairly large set of anchor mappings based on lexical equivalence of
entity labels. In addition, many concepts within the surface water domain are
defined in terms of other concepts within the domain. For instance, an estuary
can be defined as “a semi-enclosed coastal body of water which has a free con-
nection with the open sea and within which sea water is measurably diluted
with fresh water derived from land drainage”. While this information is often
available in natural language comments, most surface water ontologies other
than the SWO lack formal axioms to express these relations, which makes it
difficult for automated alignment systems to make use of them. Furthermore,
spatial relationships are particularly important within the surface water do-
main. This is true of both classes, such as the Cree class Iihthuwikimaauh,
defined as “mirror image lakes”, and properties, such as parallelTo. Few align-
ment systems are currently able to consider these types of relationships.
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4 Manual Alignments

In order to evaluate the performance of automated systems on ontology align-
ment tasks within the hydrography domain, we must first establish reference
alignments that serve as the gold standards for these tasks. Each reference
alignment was manually created by an ontologist. Semantic correctness was
verified by an earth scientist working for the US Geological Survey, and log-
ical consistency was verified using the HermiT reasoner. In the case of the
hydrOntology, labels and comments were translated from Spanish to English
by a native Spanish speaker so that the other (non-Spanish-speaking) team
members could accomplish their work.

There were some instances in which there appeared to be mistakes in the
surface water ontologies used for this study. For example, in some cases sub-
class axioms within the Cree ontology appear to be missing. For instance,
Aanayapskaach (a rocky point) is not a subclass of Naaskimikaau (a point of
land). Likewise, in Hydro3 there may be a mistake related to property domain
and range restrictions. The property hasHydrographicPart is a subproperty of
hasPart, and the domain of the hasPart property is River and the range is the
union of Rapids and Falls. On the other hand, the hasHydrographicPart rela-
tion has no restrictions on its domain or range. It seems that the domain and
range restrictions should be on hasHydrographicPart rather than on hasPart.
Our view is that in real-world use, ontology alignment systems will often be
presented with arguably imperfect ontologies. Because of this, no changes were
made to the underlying ontologies when developing the reference alignments.
The only exceptions to this were changes necessary to enable the ontologies
to open in Protégé. For example, the hydrOntology had some < characters in
comments that caused parse errors and were therefore removed. In addition,
the hydrOntology had a cardinality restriction involving the parte de prop-
erty on the Aguas de Transición class, while in the Cree ontology the HasPart
property, which has an inverse called PartOf, was involved in a cardinality re-
striction. Cardinality restrictions on these properties push the ontology from
OWL DL into OWL Full and render it undecidable by a reasoner, so they were
removed.

When developing the reference alignments, we attempted to find the sim-
plest relation that holds between classes and properties in the source ontology
(e.g. Hydro3, hydrOntology, and Cree) and those in the target ontology (i.e.
the SWO). For example, relations that involved an atom (i.e. a single class or
property) were given preference over those that involved an expression (e.g.
union, intersection, cardinality or value restrictions, etc.) and equivalence re-
lations were given preference over subsumption and disjointness. This is the
same approach followed by the developers of the reference alignments discussed
in [32].

A typical atom-to-atom relation is:

<EquivalentClasses>

<Class abbreviatedIRI="hydrOnt:Wetlands"/>
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<Class abbreviatedIRI="swo:SwampOrMarsh"/>

</EquivalentClasses>

An example of an expression-to-expression relation is shown below. (Note
that origen del agua translates to origin of the water.)

<SubClassOf>

<DataSomeValuesFrom>

<DataProperty abbreviatedIRI="hydrOnt:origen_del_agua"/>

<Datatype abbreviatedIRI="rdfs:Literal"/>

</DataSomeValuesFrom>

<ObjectSomeValuesFrom>

<ObjectInverseOf>

<ObjectProperty abbreviatedIRI="swo:startsFrom"/>

</ObjectInverseOf>

<Class abbreviatedIRI="owl:Thing"/>

</ObjectSomeValuesFrom>

</SubClassOf>

There are 106 entities in the SWO. The Hydro3-to-SWO alignment in-
volved 24 unique SWO entities, while the Cree-SWO alignment involved 42,
and the hydrOntology-SWO alignment referred to 84 unique SWO entities. Ta-
ble 2 shows the number of relations between classes and properties, organized
by complexity type (i.e. those that involve atomic entities versus expressions).
From this it is evident that the Hydro3-to-SWO alignment is the most straight-
forward – 24 out of 27 relations involve atomic entities from both ontologies.
On the other end of the spectrum, the hydrOntology-to-SWO alignment can
be considered the most complex in terms of number of expressions, because it
is the only case in which a majority of the relations involve expressions rather
than atoms.

Table 2 also shows that there are no equivalent property relationships in
any of the reference alignments. This is because most of the properties in the
source ontologies have domain and range restrictions, whereas the SWO does
not place these restrictions on most of its properties. Because of this, even very
related properties cannot be declared equivalent; instead, most of the source
ontology properties must be represented as subproperties of things in the SWO.
It is possible to represent the domain and range restrictions on the SWO
properties in terms of classes from that ontology, but this would complicate
the relations, and our approach is to identify the simplest correspondences
between the two ontologies.

Table 3 shows how often different OWL constructs appear when a relation
involves an expression. Note that a single relation can involve multiple OWL
constructs. By far the most frequently appearing constructs are intersection
(OWLIntesectionOf) and object value restrictions (OWLSomeValuesFrom and
OWLAllValuesFrom). A typical relation using these constructs is shown below.
(Aquas corrientes translates to running water.)
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Table 2 Complexity of the reference alignments. Alignments are between the indicated
ontology and the SWO.

Hydro3 hydrOntology Cree Total

Class Equivalence atom-atom 6 11 2 19
atom-expr 1 2 1 4
expr-atom 0 0 0 0
expr-expr 0 1 0 1

Class Subsumption atom-atom 6 32 10 48
atom-expr 1 42 14 57
expr-atom 1 8 0 9
expr-expr 0 5 0 5

Class Disjointness atom-atom 0 4 3 7
atom-expr 0 3 0 3
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Equivalence atom-atom 0 0 0 0
atom-expr 0 0 0 0
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Subsumption atom-atom 12 12 11 35
atom-expr 1 4 0 5
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Property Disjointness atom-atom 0 0 4 4
atom-expr 0 0 0 0
expr-atom 0 0 0 0
expr-expr 0 0 0 0

Total 28 123 45 196

<SubClassOf>

<Class abbreviatedIRI="hydrOnt:Aguas_Corrientes"/>

<ObjectIntersectionOf>

<Class abbreviatedIRI="swo:SurfaceFeature"/>

<Class abbreviatedIRI="swo:Waterbody"/>

<ObjectSomeValuesFrom>

<ObjectProperty abbreviatedIRI="swo:hasFlow"/>

<Class abbreviatedIRI="swo:Flow"/>

</ObjectSomeValuesFrom>

</ObjectIntersectionOf>

</SubClassOf>

As mentioned previously, these ontology matching tasks have been incorpo-
rated into a new complex alignment track within the annual Ontology Align-
ment Evaluation Initiative. Links to download all of the ontologies and the
reference alignments are available from the OAEI website.4

4 http://oaei.ontologymatching.org/2018/complex/index.html#hydrography
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Table 3 OWL constructs in the reference alignments. Alignments are between the indicated
ontology and the SWO.

Hydro3 hydrOntology Cree

Union 3 6 1
Intersection 0 29 15
Complement 0 1 1
Property Inverse 0 10 0
Object Value Restriction 0 62 15
Data Value Restriction 1 9 0
Cardinality Restriction 0 3 9

5 Automated Alignments

In order to evaluate the performance of automated systems in this domain,
we used two automated alignment systems, AgreementMakerLight (AML) [15]
and LogMap [20], to perform the same alignment tasks described in the pre-
vious section. AML allows users to select a set of different matchers to run
(or does so automatically based on a profile of the ontologies to be matched)
and runs each matcher individually. The resulting alignments are combined
using a greedy selection strategy and any logical inconsistencies are removed.
Matchers available within AML include lexical and structural algorithms, as
well as approaches that leverage background information such as from Word-
Net or domain-specific lexicons. On the other hand, LogMap compares two
entities based on their ISUB (i.e. string) similarity and scope (i.e. the degree
of overlap of their neighborhoods). Additionally, LogMap’s approach to on-
tology alignment heavily involves consideration of whether or not a relation
would conflict with another relation that has a higher confidence value. For
example, the system either filters out or more carefully scrutinizes what it calls
“dangerous” and logically inconsistent relations.

AML and LogMap were chosen based on their strong performance in the
OAEI over several years. In addition, we endeavored to explore the perfor-
mance of the systems mentioned in Section 2 that attempt to identify sub-
sumption relations between ontologies (i.e. the class Document subsumes the
class Book). Unfortunately, BLOOMS, CSR and ASMOV could not be located
and the authors could not provide us with those systems. TaxoMap and Ri-
MoM have executable versions available online, but they had errors when run
on the surface water ontologies that could not be fixed without the source code.
PARIS requires instance data from both ontologies, which is not available for
this alignment task.

5.1 1-to-1 Class Equivalence

Because AML and LogMap focus on identifying 1-to-1 class equivalences, we
first analyzed their performance on just this aspect of the surface water ontol-
ogy alignments (i.e. the topmost section of Table 2). The results are shown in
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Table 4 Atom-to-atom class equivalence

AML LogMap

Hydro3 True Positives 5 4
False Positives 1 2
False Negatives 1 2
Precision 0.833 0.667
Recall 0.833 0.667
F-measure 0.833 0.667

hydrOnt (translated) True Positives 3 4
False Positives 6 5
False Negatives 8 7
Precision 0.333 0.444
Recall 0.273 0.364
F-measure 0.300 0.400

hydrOnt (native) True Positives 0 0
False Positives 0 0
False Negatives 11 11
Precision 0 0
Recall 0 0
F-measure 0 0

Cree True Positives 0 0
False Positives 0 0
False Negatives 2 2
Precision 0 0
Recall 0 0
F-measure 0 0

Table 4. Precision reflects the percentage of mappings found by the system that
were correct, while recall is related to the number of correct mappings that the
system found. F-measure is the harmonic mean of precision and recall. AML
was able to identify five of the six 1-to-1 class equivalences between the SWO
and Hydro3 ontologies with one false positive, while LogMap found four with
two false positives. The performance on the version of the hydrOntology that
was translated into English was significantly worse, with AML and LogMap
correctly identifying three and four relations out of 11, respectively. Neither
system was capable of producing any results on the non-English ontologies.

Even though both AML and LogMap were designed to identify 1-to-1 class
equivalences, their performance on these ontologies from the surface water
domain are significantly below what they have achieved on the OAEI bench-
marks. For example, in 2017 AML had an F-measure of 0.76 on ontologies
from the domain of conference organization and 0.94 when matching ontolo-
gies about human and mouse anatomy. The corresponding values for LogMap
were 0.73 and 0.88 [2]. A detailed analysis of the results of AML and LogMap
on finding the 1-to-1 class equivalences among the surface water ontologies
considered here shows these systems’ reliance on lexical similarity among en-
tity labels. For example, all of AML’s correct results on the Hydro3-to-SWO
alignment task involve either exact matches of entity labels (e.g. Levee to
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Levee) or significant lexical similarity (e.g. Falls to Waterfall). This approach
can sometimes lead to incorrect results, such as AML’s treatment of Hydro-
graphic Feature in Hydro3 as equivalent to HydrographicFeature in the SWO,
when the correct mapping is between the union of Hydrographic Feature, Hy-
drographic Structure and Boundary of Hydro3 and the SWO Hydrograph-
icFeature class. A heavy reliance on lexical metrics causes AML and LogMap
to miss some fairly clear mappings, such as Wetlands to SwampOrMarsh in
the Hydro3-to-SWO task, and to fail completely when the ontologies are not
in the same language. This issue has been noted previously, as in [8].

The dependence of automated alignment systems on syntactic similarity
between entity labels is not unique to AML and LogMap: the results from the
complex alignment track of the OAEI show the same pattern. Within that
track were several different data sets, including the one presented here, one
based on the domain of academic conference organization, and one from the
geosciences.5 The conference and geosciences alignments both involve more
syntactically similar entity labels than the surface water ontology alignments.
The average normalized Levenstein distance between related source and target
entity labels in the conference ontologies is .28. For the geosciences it is .24,
while for the surface water ontologies the corresponding value is .16. Unsurpris-
ingly, the participating alignment systems performed better on the conference
and geosciences tasks than on the surface water case, in terms of the number
of systems that could generate meaningful results. For the conference case,
two alignment systems were able to identify complete complex mappings. No
systems were capable of this for the geosciences and surface water tests, so in-
stead, systems were evaluated based on their ability to determine which target
entities were related to a given source entity. The average F-measure for the
surface water ontologies was .10, versus .18 for the geosciences. More detail
about the performance of alignment systems on the 1-to-1 class equivalence
task for these ontologies can be found in [3].

5.2 Identification of related entities

As shown in Table 2, the majority of relations between these surface water
ontologies are not 1-to-1 class equivalences, but rather relations in which an
entity in one ontology is related in some way (equivalence, subsumption, or
disjointness) to an expression involving multiple entities from the other on-
tology. As discussed previously, most current automated alignment systems,
including AML and LogMap, cannot directly identify these types of relations.
However, these systems do contain a set of similarity metrics that is used to
assess the degree of relevance of one entity to another. In this section we ex-
plore the ability of these alignment systems to effectively rank target ontology
entities for each entity in the source ontology.

5 There was also a fourth data set from the plan taxonomy domain, but we could not
include it in our analysis because the reference alignments are not public.
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We evaluate the performance against the reference alignments in terms of
mean reciprocal rank. This is a standard evaluation metric in situations in
which results are ordered according to how well they apply to the current
search or query, such as search results or auto-completion suggestions. In this
case, the “query” is the given entity from the source ontology. As an exam-
ple, consider the relation below, which appears in the alignment between the
hydrOntology and the SWO:

<SubClassOf>

<Class abbreviatedIRI="hydrOnt:Aguas_Corrientes"/>

<ObjectIntersectionOf>

<Class abbreviatedIRI="swo:SurfaceFeature"/>

<Class abbreviatedIRI="swo:Waterbody"/>

<ObjectSomeValuesFrom>

<ObjectProperty abbreviatedIRI="swo:hasFlow"/>

<Class abbreviatedIRI="swo:Flow"/>

</ObjectSomeValuesFrom>

</ObjectIntersectionOf>

</SubClassOf>

Assume an alignment system produced the following ordered set of SWO
entities and similarity values for the hydrOntology entity Aguas Corrientes:

River 0.97

Rapids 0.96

Waterbody 0.94

Flow 0.91

Waterfall 0.89

hasFlow 0.88

...

We calculate the reciprocal rank by summing the inverses of the ranks of
each correct answer and dividing by the number of answers. An entity’s rank
is its place in the ordered list minus the number of entities involved in the
relationship (3 in this case). Continuing with the example, Waterbody has a
rank of 1 because it is among the first three entities. Flow has a rank of 2 and
hasFlow has a rank of 4. The reciprocal rank for this relation is therefore (1/1
+ 1/2 + 1/4) / 3 = 0.58. The mean reciprocal rank is then just the average
of the reciprocal ranks over all relations in the reference alignment. A value
of 1.0 means that the alignment system always ranks the entities involved in
the relation most highly, while a value of 0.0 occurs if the system consistently
ranks the related entities last in its list. This metric was chosen because it
can differentiate between the two system’s performance even when neither
one produces the correct answer, in effect recognizing one as “closer” than the
other based on how high the related target entities are in its list.

In order to use AML and LogMap in this way, a few changes needed to
be made. In particular, we changed AML so that the system would display
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aggregate similarity values for every entity in the target ontology when con-
sidering an entity from the source ontology. This involved commenting out
code that forced an alignment to be 1-to-1.6 When we ran the system, we did
not enable the filtering and repair functionality. As for LogMap, its approach
to ontology alignment more heavily involves consideration of whether or not
a relation would conflict with another relation that has a higher confidence
value. This approach is not conducive to a complete ranking of all possible
relations, so in order to generate such a ranking while keeping the spirit of
the LogMap approach, we modified LogMap so that rather than filtering out
inconsistent or dangerous mappings, it allows them but assesses a penalty on
their confidence value.

The results of this effort are shown in the first two data columns of Ta-
ble 5. The table clearly shows the increasing difficulty level of the alignment
tasks. Additionally, we see that this version of AML outperforms the modified
version of LogMap on this task, which is not surprising given that much of the
underlying principle of that system assumes that the goal is to generate 1-to-1
relations. As with the 1-to-1 results, upon detailed analysis of the results in
this section we again see that lexical similarity explains the vast majority of
the performance. Both AML and LogMap tend to rank syntactically similar
target entities highly, so if these are the ones involved in the complex map-
pings, the mean reciprocal rank benefits. This tendency is more important
than any other factor, such as the number or types of entities involved in the
mapping.

One thing of note is that neither AML nor LogMap make use of comments
encoded within the ontology. This may be because most of the ontologies in-
volved in the OAEI benchmarks do not contain comments. However, except
for Hydro3, all of the ontologies from the surface water domain covered here
make extensive use of comments. The comments in the Cree ontology are par-
ticularly helpful given the challenges of the language. We therefore added a
new matcher to AML that leverages these comments and evaluated its per-
formance in the same way as the other systems. To do this, we modified the
AML Lexicon to store comments in addition to entity labels. We then created
a CommentMatcher class. The match method in this class iterates through
all of the comments in the source ontology and identifies entities in the target
ontology whose names are mentioned in the comment. Relationship strength is
based on the number of words in common between the comment and the entity
name, divided by the number of words in the comment. We have made this
system publicly available on GitHub.7 The results of this approach, shown in
the last column of Table 5, show a large increase in performance when English
comments are available.

6 This code is in the string matcher and the neighborhood matcher within AML
7 https://github.com/mcheatham/aml-comments
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Table 5 Related entity recommendation (assessed by mean reciprocal rank)

AML LogMap AML with comments

Hydro3 0.91 0.69 0.91

hydrOnt (translated) 0.50 0.36 0.79

hydrOnt (native) 0.15 0.10 0.19

Cree 0.05 0.06 0.98

6 Discussion

Results like those described in Section 5 are useful because they highlight the
performance of top performing existing automated alignment systems in the
surface water domain and raise new challenges that can be addressed in the
future. We see that identifying complex relationships between two ontologies is
a very challenging task. This is particularly true in the surface water domain,
because such ontologies frequently have less syntactic and structural (due to
differing levels of abstraction) similarity than ontologies in other domains that
have been a focus for alignment system developers. Here we present some
possible research threads to improve the performance of automated alignment
systems in this domain.

The relative success of the AML with comments system in identifying re-
lated entities is an important first step that could be leveraged in a more com-
plete complex alignment system. Its performance is good enough that it can
already be of some utility in a semi-automated approach to complex ontology
alignment in this domain. For example, we have developed a web application
called WorldView that assists a domain expert (for example, a native Cree
speaker) and an ontologist in building a complex alignment between an on-
tology familiar to the domain expert and an unfamiliar one from the same
domain for which instance data (e.g. coordinates) are available. A screenshot
is shown in Figure 7. The user clicks on a word from the familiar (source)
ontology in the upper left quadrant (Area 1) and an automated alignment
system such as AML with comments ranks entities from the target ontology
in terms of relevance. The user can then click on these ranked entities to be
shown pictures of them in the map view on the right (Area 3). The domain
expert and ontologist can then work together using the axiom authoring tool
in the bottom left (Area 2) to refine the relation until the domain expert is
satisfied that the things highlighted in the map view match his or her defini-
tion of the surface water feature. This tool differs from the systems discussed
in Section 2 in that it requires instance data only for the target rather than
both ontologies. The source code is available on GitHub.8

While including comments in the alignment process significantly improves
performance, further gains will require more advanced techniques. In the sit-
uation discussed in this paper, instance data is available for only one of the

8 https://github.com/mcheatham/worldview
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Fig. 7 The WorldView semi-automated alignment system

ontologies (the SWO). However, in cases where instance data is available for
both the source and target ontologies being matched, extensional alignment
approaches could be considered. Extensional alignment systems consider the
overlap between instances when aligning entities at the schema level. In our
future work on this topic, we plan to create an extensional matcher that lever-
ages logical RDF compression [21]. Logical RDF compression uses the FP-
Growth data mining algorithm to generate rules that can be stored in lieu of
the triples they are based on. While logical RDF compression seeks to find
any rules that can be used to shrink the dataset, it is possible that some of
these rules represent meaningful semantic relations that hold between entities.
Because the FP-Growth algorithm underlying logical RDF compression can
generate a very large number of rules, some mechanism must be put in place
to choose the more semantically meaningful rules rather than the ones that re-
sult in the most compression. Our planned approach for this is to choose rules
that involve the entities suggested by traditional alignment systems. Another
possibility, when coordinates of surface water features is available in both the
source and target ontologies, is to take advantage of the spatial nature of this
domain by extending the semi-automated approach of WorldView to a fully
automated system.

In order to deal with the challenges presented by the varied vocabulary
used to describe surface water features and the interrelated nature of their
definitions, alignment systems would likely benefit from incorporating exter-
nal resources, similar to the way AML leverages upper level life sciences on-
tologies as a source of background knowledge when aligning ontologies from
that domain [15]. Unfortunately, the surface water domain is currently some-
what lacking in these resources. Another approach might be to leverage more
general purposes knowledge sources, such as Wikipedia. Working with unstruc-
tured text in this context is difficult, but relatively recent advances in word
embeddings ([25]) might make such an approach feasible.
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7 Conclusion

This paper explored the nature of the relationships that exist across a set of
ontologies from the surface water domain and examined the performance of
current automated alignment systems in this domain. Characteristics common
to surface water ontologies, such as lack of syntactic similarity of entity labels,
differences in modeling granularity, and the tendency for surface water features
to be defined in terms of other features pose particular challenges for current
systems. Our results show that existing alignment systems do not perform as
well in this domain as they do on standard ontology alignment benchmarks.
In addition, no current systems were able to find relations other than 1-to-
1 equivalences. The reference alignments presented here have therefore been
introduced as part of a new track within the Ontology Alignment Evaluation
Initiative, in an effort to spur researchers to improve performance on this
domain and to develop alignment systems capable of identifying the complex
relationship types present among surface water ontologies. This paper provides
background knowledge and baseline results for system developers interested in
participating in that track. In addition, a discussion of possible next steps to
improve performance in this domain is included in order to provide ideas for
future work on this topic.
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