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2IRIT & Université de Toulouse 2 Jean Jaurès, Toulouse, France
e-mails:elodie.thieblin@irit.fr, cassia.trojahn@irit.fr
3Wright State University, Dayton, USA
e-mail:michelle.cheatham@wright.edu
4Instituto Gulbenkian de Ciência, Oeiras, Portugal
e-mail:dfaria@igc.gulbenkian.pt
5Lasige, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
e-mail:clpesquita@fc.ul.pt
6Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
e-mail:ondrej.zamazal@vse.cz

Abstract

The development of semi-automated and automated ontology alignment techniques is an

important part of realizing the potential of the Semantic Web. Until very recently, most

existing work in this area was focused on finding simple (1:1) equivalence correspondences

between two ontologies. However, many real-world ontology pairs involve correspondences that

contain multiple entities from each ontology. These “complex” alignments pose a challenge for

existing evaluation approaches, which hinders the development of new systems capable of finding

such correspondences. This position paper surveys and analyzes the requirements for effective

evaluation of complex ontology alignments and assesses the degree to which these requirements

are met by existing approaches. It also provides a roadmap for future work on this topic taking into

consideration emerging community initiatives and major challenges that need to be addressed.

1 Introduction

Ontology alignments specify the relations that hold between entities in two or more ontologies.

Identifying these relations is critical for integrating data across the Semantic Web. The

development of automated and semi-automated techniques to establish alignments between

ontologies has been an active area of research since at least 2004; however, the vast majority

of existing alignment systems seek to identify relatively simple (1:1) equivalence and (more

rarely) subsumption relationships. While simple (1:1) relationships are limited in expressiveness

by linking single entities, complex matching approaches are able to generate correspondences

which better express the relationships between entities of different ontologies. Earlier works have

introduced the need for complex alignments (Maedche et al., 2002; Visser et al., 1997).

Recent work has shown that alignments between pairs of real-world ontologies contain many

relations that are more complex than those targeted by current systems. These relations may

involve set operations such as union, intersection, disjunction, cardinality restrictions, and other

constraints. For example, two ontologies representing the domain of conference organization may

have the following relationship between their entities, which states that the class AcceptedPaper

in the source ontology is equivalent to the intersection of the class Paper with entities that

appear in the domain of the acceptedBy property: 〈o1:AcceptedPaper, intersectionOf(o2:Paper,

minCardinality(1, o2:acceptedBy)), ≡, 1.0〉.
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These more complex relationships often make up half or more of the relations within an

alignment, as discussed in Zhou et al. (2018). It is therefore an important research area for

developers of alignment systems to consider. Unfortunately, the topic of complex ontology

alignment has received relatively little attention thus far. Different complex matching approaches

have emerged in the literature (Ritze et al., 2009, 2010; Jiang et al., 2016; Parundekar et al.,

2010, 2012; Walshe et al., 2016), however most efforts on evaluation are still dedicated to the

matching approaches dealing with simple alignments.

We posit that part of the reason for the lack of research on complex alignment systems is a

lack of benchmarks that contain complex relations and a lack of appropriate metrics with which

to evaluate the performance of systems on such benchmarks. The issue of the lack of ontology

alignment benchmarks involving complex relationships is being addressed with the introduction

of a new complex alignment track within the Ontology Alignment Evaluation Initiative1 (OAEI),

as described in (Thiéblin et al., 2018a). This paper begins work on the second issue.

The most common evaluation approach for ontology alignments is to perform an exact match

comparison between the correspondences suggested by an alignment system and those in a

reference alignment and to compute precision and recall based on this. This is a somewhat

unforgiving approach. For example, in the case of the aforementioned conference ontologies, if an

alignment system identified a relation between the ontologies of the form 〈o1:AcceptedPaper,

unionOf(o2:Paper, minCardinality(1, o2:acceptedBy)), ≡, 1.0〉, i.e. with union instead of

intersection, it would be considered a false positive, and the correct relation would be considered a

false negative. While the system should clearly be penalized for not producing the correct relation,

considering this as completely incorrect lacks important nuance. For instance, this relation could

be relatively easily corrected by a user in a semi-automated alignment system. Moreover, the

alignment system developer would likely benefit from knowing how close the system came to

generating the correct output in this case.

The primary goal of this position paper is to survey and analyze the requirements for effective

evaluation of complex ontology alignments, assess the degree to which these requirements are

met by existing approaches, and provide a roadmap for future work on this topic. We begin by

discussing related work in Section 2. Section 3 presents the relevant background information,

including a formal definition of complex alignments and their representation formats. A generic

model of the ontology alignment evaluation process that highlights the choices implicit in

implementing a complete evaluation strategy based on reference alignments is then presented in

Section 4. The paper then surveys existing ontology alignment evaluation metrics and analyzes

their strengths and weaknesses with respect to evaluation of complex alignments when a reference

alignment is available. Section 5 overviews the alternative evaluation measures applicable in the

absence of reference alignments. The paper continues with a discussion of the gaps that exist

between the current state of the art and what is needed for effective evaluation of complex

alignments following with its feasibility analysis in Section 6 and then argues about necessary

future work to fill in those gaps (Section 7).

2 Related Work

Early studies have introduced the need for complex ontology alignments (Visser et al., 1997;

Maedche et al., 2002) and different approaches for generating such alignments have been proposed

in the literature since. These approaches rely on diverse methods such as correspondence patterns

(Ritze et al., 2009, 2010), knowledge-rules (Jiang et al., 2016), statistical methods (Parundekar

et al., 2010, 2012; Walshe et al., 2016), or genetic programming Nunes et al. (2011) and path-

finding algorithms (Qin et al., 2007). While most work on complex ontology matching has been

dedicated to the development of complex matching approaches, automatic support for evaluating

complex approaches has still not been extensively addressed in the literature.

1http://oaei.ontologymatching.org/2018/complex/
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The evaluation of most existing approaches has been done by manually calculating the

precision of the alignments generated by the systems (Ritze et al., 2009, 2010; Parundekar

et al., 2012; Walshe et al., 2016). In order to be able to measure recall, specific datasets have

been constructed. The approach of Parundekar et al. (2012) estimated their recall based on the

recurring pattern between DBpedia and Geonames:∃dbpedia:country.{theCountryInstance} ≡
∃geonames:countryCode.{theCountryCode} where theCountryInstance is a country instance

of DBpedia such as dbpedia:Spain and theCountryCode is a country code such as “ES”. They

estimated the number of occurrences of this pattern between these ontologies and calculated the

recall based on this estimation. In Qin et al. (2007) a set of reference correspondences between two

ontologies was manually created, involving nine reference correspondences from which only two

cannot be expressed with simple correspondences. In Walshe et al. (2016) the authors proposed

an algorithm to create an evaluation data set that is composed of a synthetic ontology containing

50 classes with known Class-by-attribute-value (a correspondence pattern) correspondences with

DBpedia and 50 classes with no known correspondences with DBpedia. Both ontologies are

populated with the same instances.

As described by Thiéblin et al. (2018b), the metrics of accuracy and top−x accuracy have

been also applied in evaluation settings in which the number of correspondences is predefined,

e.g., there is one correspondence for each entity of the target schema/ontology. The accuracy

is then the percentage of predefined questions having a correct answer. A “question” in this

context could be a source entity to be matched and the “answers” the correspondences having

this entity as source member. Some approaches output various answers for each question, e.g.,

a ranked list of correspondences for each source entity. In this case the top-x accuracy is the

percentage of questions whose correct answer is in the top-x answers to the question. For example,

top-3 accuracy is the fraction of source entities for which the correct correspondence is in the

three best correspondences output by the system. Alternatively, the approach in Thiéblin et al.

(2017), to evaluate complex correspondences between agronomic ontologies is based on manually

comparing the results of the reference queries and queries automatically rewritten with the help

of the complex alignments.

More recently, complex evaluation was introduced in the 2018 Ontology Alignment Evaluation

Initiative (Thiéblin et al., 2018a). The track consisted of four datasets from a variety of

domains: conference organization, hydrography, geoscience, and plant taxonomies. Each dataset

was evaluated in a different way. For the conference dataset, precision and recall of the system’s

alignment were manually calculated based on exact match with respect to the reference alignment.

For the plant taxonomy dataset, the evaluation was two-fold. First, the precision of the output

alignment with respect to exact match against the reference was manually assessed. Then, a set

of source queries was rewritten using the output alignment. Each rewritten target query was then

manually classified as correct or incorrect. A source query was considered successfully rewritten

if at least one of the target queries was semantically equivalent to it. Finally, for the hydrography

and geoscience datasets, the evaluation plan was to divide the alignment task into three subtasks

and assess performance on each one separately: 1) given an entity from the source ontology,

identify all related entities in the source and target ontology; 2) given an entity in the source

ontology and the set of related entities, identify the logical relation that holds between them;

3) identify the full complex correspondences. The first subtask was evaluated based on precision

and recall with respect to exact match against the reference alignment and the latter two were

evaluated using semantic precision and recall.

The evaluation plan for the hydrography and geoscience datasets was not really put to the test

in 2018, however, because no alignment systems were capable of finding complex correspondences

across these ontologies. The manual nature of the evaluation for the conference organization

and plant taxonomy datasets was feasible because only two alignment systems, AMLC and

CANARD, were able to generate any complex relations for those datasets; however, there are

obvious limitations to a manual approach, both during system development (system developers
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cannot quickly test modifications to their system to assess whether or not they improve the

performance) and evaluation (the time taken is prohibitive for the OAEI track organizers if many

systems participate). Additionally, manual evaluation might introduce bias or inconsistencies into

the performance assessment.

3 Background

The examples of both simple and complex correspondences provided throughout this paper are

based on the OntoFarm ontologies from the conference domain (Šváb et al., 2005; Zamazal

and Svátek, 2017). Complex examples are based on the complex version of this dataset, which

consists of alignments between all combinations of three of the OntoFarm ontologies, ekaw, cmt

and conference, created by domain experts from three universities who were all familiar with

ontology alignment (Thiéblin et al., 2018a).

3.1 Complex ontology alignment

We define ontology matching as the process of generating an alignment A between two ontologies:

a source ontology O and a target ontology O′, as in (Euzenat and Shvaiko, 2013). A is directional,

denoted AO→O′ , and is a set of correspondences 〈e, e′, r, s〉. Each correspondence contains a

relation r (e.g., equivalence (≡), subsumption (≤, ≥)) between two members e and e′, and s

expresses the strength or confidence (in [0;1]) of this correspondence. Each member can be a

single ontology entity (class, object property, data property, individual, value) of respectively O

and O′ or a more complex construction that is composed of some entities using constructors or

transformation functions.

We consider two types of correspondences depending on the type of their members (Thiéblin

et al., 2018; Zhou et al., 2018).

• a correspondence is simple if both e and e′ are single entities (represented as IRIs):

〈ekaw:Paper, cmt:Paper, ≡, 1〉

• a correspondence is complex if at least one of e or e′ involves a constructor or a

transformation function:

〈ekaw:AcceptedPaper, someV aluesFrom(cmt:hasDecision, cmt:Acceptance), ≡, 1.0〉
〈concatenation(edas:hasFirstName, “ ”, edas:hasLastName), cmt:name, →, 1〉

A simple correspondence is usually noted (1:1), and a complex correspondence can be (1:n) if

its source member is a single entity, (m:1) if its target member is a single entity or (m:n) if neither

of the members are single entities. Note that these cardinalities refer to the number of entities

from the source and target ontologies in a single correspondence, not across all correspondences

within the alignment. For example, a (1:n) correspondence means that one source entity is related

to n target entities via a relationship expressed in a single complex correspondence, not that the

same source entity is mapped in a (1:1) manner to n different target entities.

Because relations between instances are generally (1:1) in nature (e.g. sameAs, differentFrom),

complex correspondences predominantly involve entities from the TBox of the ontologies rather

than the ABox.

3.2 Representation formats

A general understanding of formats used to express complex correspondences between entities is

necessary to comprehend some of the metrics designed to measure the similarity between such

correspondences. This section provides an overview of common approaches.

The 〈e, e′, r, n〉 tuples making up a simple alignment are most often encoded using RDF

in a representation format commonly referred to as the Alignment API format, which was

introduced in Euzenat (2004). This API is used by the OAEI and has wide adoption within the
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ontology alignment research community. Version 4 of the Alignment API, described in David

et al. (2011), also contains a representation format for complex correspondences, known as

the Expressive and Declarative Ontology Alignment Language (EDOAL) (see Euzenat et al.

(2007)). While in the simple alignment format e and e′ are single IRIs, in EDOAL these are

expressions involving classes and properties that can be combined using intersection, union,

disjunction and composition operators and/or restricted using constraints on attributes, such

as domain, range, cardinality or value restrictions. The EDOAL representation for the cor-

respondence 〈cmt:ProgramCommitteeMember, someV aluesFrom(conference:was a member of,

conference:Program committee), ≡, 1.0〉 is shown below.

<map>

<Cell>

<entity1>

<edoal:Class rdf:about="&cmt;ProgramCommitteeMember"/>

</entity1>

<entity2>

<edoal:AttributeDomainRestriction>

<edoal:onAttribute>

<edoal:Relation rdf:about="&conference;was_a_member_of"/>

</edoal:onAttribute>

<edoal:exists>

<edoal:Class rdf:about="&conference;Program_committee"/>

</edoal:exists>

</edoal:AttributeDomainRestriction>

</entity2>

<measure rdf:datatype="&xsd;float">1.</measure>

<relation>Equivalence</relation>

</Cell>

</map>

While its general acceptance and associated toolset make EDOAL a convenient choice

for representing complex relationships between ontologies, there are some limitations to this

approach. For instance, while EDOAL supports a limited set of transformations, this aspect

of the language is somewhat immature. Another issue is that in some cases a concept that is

represented as a class in one ontology is modeled as an instance in another ontology (or, one

may need to restrict a set of possible instance values involved in a relationship based on their

type). This is similar to the OWL concept known as punning, but it is not currently possible in

EDOAL. Finally, some relations may be modelled as object properties in one ontology and data

properties in another. This occurs frequently when one ontology author has used a “strings as

things” approach while the other has instead created instances. EDOAL does not allow one to

specify relationships between object and data properties. Indeed, this is not possible in OWL DL

either, though it is permissible in OWL Full.

EDOAL is the most common representation format for complex alignments, but they can be

represented in a variety of different ways. For example, OWL can be used directly. This has the

benefit of existing tool support for creating, modifying, and reasoning with the alignment, as well

as merging ontologies based on it, but it limits the possible complex correspondences to those

expressible in OWL (or OWL DL if reasoning is desired), which in particular makes it difficult

to encode relationships that involve transformation functions. Another option is to use logical

rules following one of a range of different syntaxes, which has the benefit of being generally easier

for humans to parse from text than either EDOAL or OWL, but there is a lack of tool support

for direct use of alignments expressed in this way. Other possibilities for complex correspondence

representation include using a dedicated vocabulary or representing them as queries. As described
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in (Xiao et al., 2018), in the area of OBDA (Ontology-Based Data Access) the R2RML format,

a W3C standard, has been extended in many different ways, including for this purpose. For a

more complete survey on the representation of ontology alignments, we refer the reader to the

one presented in (Scharffe, 2009).

4 Evaluation with a reference alignment

The evaluation of ontology alignments is often performed with respect to a reference alignment, as

is the case in most of the OAEI tracks. Usually, this evaluation relies on the traditional information

retrieval evaluation metrics of precision and recall, and only contemplates correspondences that

are exactly equal between the evaluated and reference alignments. However, as we will overview

in this section, several alternative approaches to score inexact matches between the evaluated

and reference alignments have been proposed.

4.1 Generic evaluation process

The generic process of evaluating an ontology alignment Aeval using a reference alignment Aref

can be decomposed into four steps, as schematized in Figure 1: anchor selection, correspondence

comparison, scoring, and aggregation. Note that these steps are not independent, and in fact,

much existing work on the topic of ontology alignment evaluation conflates the latter three steps

(Ehrig and Euzenat, 2005; Euzenat, 2007). In practice the correspondence comparison approach

selected and corresponding scoring scheme have ramifications throughout the evaluation process.

Aeval =
{c1, c2, ...}

Aref =
{cr1, cr2, ...}

Anchor
selection

0

Correspondence

comparison 1

Scoring

2

Aggregation

3
final
score

For each ci (or crj)

〈ci, crj〉 rel(ci, crj) scorei

Figure 1 Evaluation process of the alignment Aeval with the reference alignment Aref .

In the anchor selection step, the set of correspondences crj from the reference alignment Aref

that have to be compared with each correspondence ci from the evaluated alignment Aeval (or vice

versa) is computed. This selection depends on the correspondence comparison approach adopted.

In the traditional evaluation where only exactly matching correspondences are to be scored, only

these need be selected in this step. But if related correspondences are also contemplated, then

each evaluated correspondence may have several such correspondences in the reference alignment,

and all of them will need to be compared unless it is evident a priori which is the most similar

(e.g. if there is an equivalent correspondence).

In the correspondence comparison step, for each pair of correspondences 〈ci, crj〉, where

ci = 〈ei, e′i, ri, si〉 and crj = 〈erj , e′rj , rrj , srj〉, a relation rel(ci, crj) between ci and crj is

computed. rel(ci, crj) can be decomposed into the relations between the elements of ci and crj :

rel(ci, crj) =


rel(ei, erj)

rel(e′i, e
′
rj)

rel(ri, rrj)

rel(si, srj)

As we will overview in Section 4.2, relations between entities include syntactic equivalence,

semantic equivalence, and semantic relatedness; the relation between the correspondence relations

includes equivalence and relatedness; and the relation between the confidence scores, when

considered, is typically numerical similarity. In the traditional evaluation, the relation between
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the confidence scores is ignored, and correspondences are considered equivalent if both the entities

and the correspondence relation are syntactically equivalent.

In the scoring step, a scoring function is applied to the relation rel(ci, crj) between ci and

crj . This is usually done by applying the scoring scheme associated with the correspondence

comparison approach to score the relations between each element in the correspondences,

then multiplying these scores. scorei is the result of this scoring function. In the traditional

evaluation, equivalent correspondences are treated as true positives and scored 1, and no other

correspondences are scored.

In the aggregation step, the scores are aggregated over the whole alignment to produce the

final score. In the traditional evaluation, this aggregation means computing precision and recall

by tallying the true positives and dividing by the number of correspondences in the evaluated and

reference alignments, respectively. Correspondences in the evaluated alignment that are not in

the reference alignment are false positives, and those in the latter and not in the former are false

negatives. In cases where inexact correspondence matches are contemplated, then the aggregation

must also include the selection of which correspondence pairs to score, as each evaluated

correspondence may have a non-zero score when compared with several reference correspondences.

Intuitively, it makes sense to select only the most similar reference correspondence for each

evaluated correspondence (which in the trivial case would be an exact match). However, the fact

that multiple evaluated correspondences may have the same reference correspondence as the most

similar makes this selection less straightforward. There is some argument to enforcing that each

correspondence from both the reference and evaluated alignments be considered only once in the

aggregation, but this may not make sense when neither evaluated correspondence is related to

any other reference correspondence.

While this generic evaluation workflow is valid for both simple and complex alignments, it is

challenging to apply it to complex alignments due to the fact that complex correspondences

feature expressions of arbitrary complexity with a wide range of constructs, rather than

singular entities. Thus, one cannot simply compare URIs of the mapped entities between two

correspondences and check for identity or a semantic relation between them, as there are

additional layers to contemplate when comparing correspondences. This affects the anchor

selection step as it may not be trivial to determine that two complex correspondences are

related in a manner that is computationally more efficient than the worse-case scenario of

skipping anchor selection and making the full pairwise comparison of all correspondences in the

subsequent step. It also affects the correspondence comparison step, as determining the relation

between complex entities requires comparing all the singular entities they list, as well as the

expressions in which they are listed, likely in recursive fashion, as there is no theoretical limit to

the nesting of expressions within expressions. Furthermore, there are cases where one might want

to consider making a joint evaluation of two or more correspondences against a single reference

correspondence, which complicates both the correspondence comparison and the aggregation step.

For example, consider this reference correspondence from the Conference test set in the complex

alignment track of the OAEI:

〈intersectionOf(ekaw:Paper Author, complementOf(someV aluesFrom(ekaw:reviewerOfPaper,

ekaw:Paper))), intersectionOf(conference:Regular Author, complementOf(conference:Review-

er)), ≡, 1.0 〉
Consider also the following two correspondences produced by an alignment system:

〈ekaw:Paper Author, conference:Regular Author, ≡, 1.0 〉
〈someV aluesFrom(ekaw:reviewerOfPaper, ekaw:Paper), conference:Reviewer, ≡, 1.0 〉

In this scenario, if neither of the system correspondences were in the reference alignment, it is

arguable that both should be scored against the reference correspondence together, as the latter

can be logically derived from them ({A ≡ A’; B ≡ B’} ⇒ A ∩ !B ≡ A’ ∩ !B’).

An additional challenge to the evaluation of complex alignments is that, in practice, there

is a greater variety of correspondence relationships, since most simple ontology alignment
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benchmarks consist entirely of equivalence relations. This aggravates the difficulty in comparing

correspondences, as the relation may factor into how two correspondences are related. Picking up

on our example above, consider the following correspondence produced by a matching system:

〈intersectionOf(ekaw:Paper Author, complementOf(someV aluesFrom(ekaw:reviewerOfPaper,

ekaw:Paper))), conference:Regular Author, ≤, 1.0 〉
This correspondence is logically derived from the reference correspondence, and thus formally

correct (if less specific than desired) whereas it would not be correct if the relation were

equivalence.

Finally, the several layers involved in comparing complex correspondences make it desirable

to use comparison approaches that generate more nuanced similarity scores than the simple

all-or-nothing approach traditionally used in alignment evaluation. This means that there will

likely be more correspondence comparisons involved in evaluating complex alignments, and the

aggregation step will be less straightforward.

4.2 Existing approaches for correspondence comparison

As we detailed in the previous section, the correspondence comparison approach affects the whole

evaluation workflow, as it determines which correspondences are selected as anchors, how they

are compared and how they should be scored, as well as how they can be aggregated. Due to this

central importance, and to the fact that they are the characterizing factor of different forms of

alignment evaluation, this section is devoted to surveying existing approaches for correspondence

comparison and discussing their application to complex alignments. This is not an exhaustive

survey, but rather an attempt to provide insights on the strengths and weaknesses of each type

of approach when used to evaluate complex ontology alignments.

The following example will be used throughout this section. Correspondences in the reference

alignment (R):

1. 〈cmt:Author, conference:Regular Author, ≡, 1.0〉

2. 〈cmt:ProgramCommitteeMember, someV aluesFrom(conference:was a member of, confer-

ence:Program committee), ≡, 1.0〉

3. 〈cmt:User, unionOf(conference:Regular Author, conference:Reviewer), ≥, 1.0〉

4. 〈cmt:AuthorNotReviewer,intersectionOf(conference:Regular Author,

complementOf(conference:Reviewer)), ≡, 1.0〉

Correspondences generated by alignment system 1 (S1):

1. 〈cmt:Author, conference:Regular Author, ≤, 1.0〉

2. 〈cmt:ProgramCommitteeMember, minCardinality(1, conference:was a member of, confer-

ence:Program committee), ≡, 1.0〉

3. 〈cmt:User, conference:Regular Author, ≥, 1.0〉

4. 〈cmt:User, conference:Reviewer, ≥, 1.0〉

5. 〈cmt:AuthorNotReviewer, unionOf(conference:Regular Author, conference:Reviewer), ≡,

1.0〉

Correspondences generated by alignment system 2 (S2):

1. 〈cmt:Author, conference:Contribution 1th-Author, ≡, 1.0〉 (Note that confer-

ence:Contribution 1th-Author is a subclass of conference:Regular Author)
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2. 〈cmt:AuthorNotReviewer,intersectionOf(conference:Conference participant,

complementOf(conference:Committee member)), ≡, 1.0〉

We will use the notation ci =< ei, e
′
i, ri, si > to refer to any correspondence generated by an

alignment system, and crj =< erj , e
′
rj , rrj , srj > to refer to any reference correspondence.

4.2.1 Syntactic
Syntactic approaches to alignment evaluation compare the elements of two correspondences based

on their syntactic description (i.e., the URIs of entities, or the identifiers of correspondence

relations or complex expressions). This includes the traditional evaluation approach of scoring

only exact matches, where a correspondence is scored 1 if both of its entities and its relation are

syntactically equivalent to the reference correspondence (i.e., ei ≡ erj , e
′
i ≡ e′rj , and ri ≡ rrj) and

scored 0 otherwise.

This exact match approach is used to compare correspondences in most existing work on

ontology alignment, including in most OAEI tracks and in the majority of ontology alignment

papers. In fact, if papers do not explicitly state what evaluation approach they are using, it

is assumed to be exact match. Thus, this approach has the advantage of being both simple

and widely used. It is often possible to compare the results of an alignment system to previous

work based on this approach by referring to the original papers rather than re-running the

experiments. Furthermore, available computational tools for handling ontology alignments, such

as the Alignment API, usually contain evaluation facilities based on exact match and do not

require users to write additional code.

However, this approach is unforgiving in that it treats as incorrect correspondences that, while

not listed in the reference alignment, can be logically derived from it (or even equivalent to it),

and thus are formally correct. Furthermore, it does not distinguish between correspondences

that are formally incorrect but closely related to correct correspondences, and those that are

completely incorrect. Referring to the example above, the first correspondence in the reference

alignment is an equality, but the first alignment system identifies the relation between the same

entities as subsumption. This is considered completely incorrect under the exact match approach,

even though it is formally correct (if imprecise) and may be a useful result in some applications

of the alignment, such as query answering. Meanwhile, the second alignment system correctly

identified the equality relationship for cmt:Author, but rather than conference:Regular Author,

it specified conference:Contribution 1th-Author, a subclass of conference:Regular Author, as the

equivalent entity. This is formally incorrect, but the correct correspondence can be inferred

from it, so it is only partially incorrect, as the correspondence holds true for a subset of

cmt:Author. If the alignment system had specified conference:Chair, which has no relation at all

to conference:Regular Author, then the correspondence would be fully incorrect. The case of the

second reference correspondence is even more grave, as the first system identified a correspondence

that is syntactically different but logically equivalent and thus formally correct. Under a syntactic

approach, this correspondence would result in both a false positive and a false negative (as the

syntactically correct correspondence is missing) whereas it should clearly result in a true positive.

Regarding the third correspondence from the reference alignment, the first alignment system

states that cmt:User is related to both conference:Regular Author and conference:Reviewer, yet

this is also treated as incorrect (specifically, as one false negative and two false positives), because

the system specified each relation separately instead of as a union. Finally, both alignment systems

generate relations that are somewhat similar to the fourth one from the reference alignment. The

first system has the correct entities but incorrect expressions while the second has the expressions

correct but incorrect entities. Both of these are treated as completely incorrect.

An alternative to the traditional binary syntactic evaluation is the weighted syntactic

evaluation, where the confidence scores of the alignment to evaluate and those of the reference

alignment are taken into consideration. This is particularly relevant when the reference alignment

is not considered ground truth and has similarity scores other than 1, such as in the approach
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proposed by Cheatham and Hitzler (2014). In this approach, which is also implemented in the

Alignment API, the true positive count is replaced by the sum of the products of confidence

scores si ∗ srj , and the false positive and false negative counts were replaced by the sum of

differences of confidence scores |si − srj | respectively for si < srj and si > srj . This penalizes

an alignment system more if it fails to identify a strong correspondence than a weak one, and

rewards the alignment system if its scoring scheme approximates the confidence scores of the

reference alignment. A similar methodology, albeit relying on a vector representation of the

ontology alignments, was also proposed by (Sagi and Gal, 2018).

4.2.2 Rule-based semantic and reasoning-based semantic

Semantic approaches compare correspondences based on their semantic meaning rather than their

syntactic representation. This is done by looking at the correspondence within the context of the

ontologies and determining whether they are semantically related. If they are “closely” related,

but not equivalent, they are typically scored in (0; 1], depending on the scoring scheme of the

approach.

An example of such an approach is the relaxed precision and recall metric proposed by

(Ehrig and Euzenat, 2005), which defines different similarity functions for the various elements

of a correspondence, depending on whether precision or recall is to be computed. It scores the

similarity between two entities, ei and erj according to:

entity prec similarity =


1 if ei ≤ erj

0.5 if ei > erj

0 otherwise

entity rec similarity =


1 if ei ≥ erj

0.5 if ei < erj

0 otherwise

where > and < stand for direct sub- or super-classes/properties only. The similarity between two

relations is defined only for the case where ri is ≡ (as most matching systems tend to produce

only equivalence correspondences) and depends only on rrj according to:

relation prec similarity =


1 if ≡ or <

0.5 if >

0 otherwise

relation rec similarity =


1 if ≡ or >

0.5 if <

0 otherwise

Finally, the similarity between confidence scores, si and srj , is scored according to:

score similarity = 1− |si − srj |

This approach thus aims to reward correspondences that are semantically close to the correct

correspondence from the perspective of query answering. Namely, in the case of precision, it

does not penalize at all correspondences that are narrower than the correct correspondence (but

implied by it) since these would result in missing but only correct query results (full precision).

Likewise, in the case of recall, it does not penalize correspondences that are broader than the

correct correspondence (and imply it) since these would result in no missing results but some

incorrect ones (full recall).

Another semantic approach also proposed by (Ehrig and Euzenat, 2005) focuses on the

perspective of alignment validation rather than query answering, and seeks to account for the

effort it would take a human reviewer to correct an erroneous correspondence that is semantically

close to the correct one. This approach can be considered a simple edit-distance approach, as it

attributes a cost to each edition necessary for converting an incorrect correspondence to a correct

one. Under this approach, the similarity between entities is given by:
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entity effort similarity =


1 if ei ≡ erj

0.6 if ei < erj

0.4 if ei > erj

0 otherwise

where again, > and < stand for direct sub- or super-classes/properties only. The rationale behind

attributing a different similarity to sub- and super-entities is that typically ontology entities are

expected to have more sub- than super-entities, and thus correcting to a broader entity requires

less effort than correcting to a narrower entity. The similarity between relations is 1 if the relations

are the same and 0.5 if they are different, under the rationale that correcting the relation is fairly

trivial even if the relation predicted by the matching system is completely off.

Another semantic approach is the semantic precision and recall proposed by (Euzenat, 2007).

Under this approach, a reasoner is employed to count the number of correspondences suggested

by the alignment system that are entailed by a merged ontology consisting of the source and

target ontologies and the reference alignment. This count is then divided by the number of

correspondences in the proposed alignment to produce the system’s precision. Analogously, recall

is computed by counting the number of relations in the reference alignment that are entailed by

a merged ontology consisting of the source and target ontologies and the proposed alignment,

then dividing this by the number of correspondences of the reference alignment.

Regardless of their scope and implementation, semantic approaches tend to mitigate some of

the issues we reported for syntactic approaches, since they account for correspondences that are

semantically close to the correct ones. Here we discuss the score produced by each metric for the

example alignments presented at the start of Section 4.2. This information is summarized in Table

1. The first alignment system identified the relation as subsumption rather than equivalence.

This would score 0 under a syntactic approach, but would score respectively 1 and 0.5 in

relaxed precision and recall, 0.5 in effort similarity, and 1 and 0 in semantic precision and recall

(as subsumption is entailed by but does not entail equivalence). Likewise, the correspondence

proposed by the second system, in which the entity from the target ontology was a subclass

of the correct entity, would score 0 under a syntactic approach, but respectively 1 and 0.5

in relaxed precision and recall, and 0.6 in effort similarity. In this case it would also score 0

under semantic precision and recall, as equivalence to a class neither entails nor is entailed by

equivalence to its superclass. The contrary happens in the second reference correspondence in

the example, in which the first system produced a logically equivalent correspondence. In this

case, the system’s correspondence would score 1 under semantic precision and recall, but would

still be scored 0 under relaxed precision and recall as well as effort similarity, as these rule-based

approaches have no provisions for complex alignment expressions and thus cannot detect that

these correspondences are logically equivalent. Similarly, the fifth correspondence of the first

system, which differs from the fourth correspondence of the reference alignment only in that a

union was used instead of an intersection, would score respectively 1 and 0 in semantic precision

and recall (as equivalence to the union entails equivalence to the intersection but not the other

way around) but also be scored 0 under the other approaches, for the same reason as in the

previous case. From the perspective of alignment validation, such a correspondence should be

fairly trivial to correct, and thus should have a non-zero score. In the case of the third reference

correspondence, for which system one predicts two related correspondences (3 and 4), these would

also be scored respectively 1 and 0 under semantic precision and recall (as superclass of the union

entails superclass of each element in the union but not the other way around), but again 0 under

the other approaches, as they have no provision for comparing correspondences other than on a

one-to-one basis.

In summary, the main limitations of rule-based semantic approaches with respect to complex

alignments are that no such approach has been proposed that encompasses the range of
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Issue
Related

Items

Exact

Match

Relaxed

Prec.

Relaxed

Rec.
Effort

Sem.

Prec.

Sem.

Rec.

Mismatched

relation
R1,S11 0 1 0.5 0.5 1 0

Subclass rather

than exact class

match

R1,S21 0 1 0.5 0.6 0 0

Logically

equivalent
R2,S12 0 0 0 0 1 1

Correct but

expressed as multiple

correspondences

R3,

S13, S14
0 0 0 0 1 0

Correct entities;

incorrect construction
R4,S15 0 0 0 0 1 0

Correct construction;

incorrect entities
R4,S22 0 0 0 0 0 0

Table 1 Scores of the surveyed metrics on the sample alignments.

expressions possible in these alignments, and that they do not contemplate joint correspondence

evaluation in the cases where a correspondence is decomposed into several related ones.

Furthermore, proposed approaches are coarse in granularity, and only distinguish between

identical entities, direct sub-/super-entities, and all other cases. They do not account for cases

of other relations, such as indirect sub-/super-entities, even though (Ehrig and Euzenat, 2005)

did suggest that more a granular approach could do so by explicitly taking into the account the

edge-distance between entities in the similarity function.

By contrast, reasoning-based semantic approaches do account for all complex expressions that

can be encoded in OWL, and also handle cases of correspondence decomposition well. However,

they only score correspondences that are logically entailed, ignoring those that are semantically

related but not entailed. Thus, in cases that can be handled by both reasoning-based and rule-

based approaches, reasoning-based approaches are stricter in their assessment of performance

for purposes such as query answering or alignment validation. Furthermore, reasoning-based

approaches are computationally more complex than rule-based approaches, and may not be

applicable in practice to very large ontologies, as reasoning over these is still a computational

challenge. Finally, reasoning is only possible if the merged ontology is in OWL DL, which may

not be the case in complex alignments even if the original ontologies are (for example if a

correspondence is made between an object property and a datatype property).

4.2.3 Instance-based

Instance-based approaches compare two correspondences between ontology classes based on the

overlap between their sets of instances. In (Isaac et al., 2007), instance-based similarity measures

are divided into two primary categories: traditional set similarity metrics and information-

theoretic measures. Set similarity is most often computed based on the Jaccard index, which

is the ratio of instances that belong to both the source and target classes to the number of

instances belonging to either the source or target classes. Information-theory measures reflect

the degree to which knowledge of an instance’s categorization via e of a correspondence provides

knowledge about the appropriateness of the e′ categorization. Examples include point-wise mutual

information, log likelihood ratio, and information gain. More recent work has proposed instance-

based metrics based on locality-sensitive hashing (Duan et al., 2012) an on Cohen’s kappa

coefficient (Kirsten et al., 2007).
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Instance-based correspondence comparisons are powerful in that they directly correspond to

the underlying definition of ontological entities as sets of instances that are related in some way.

However, the applicability of such metrics is limited to the evaluation of class correspondences,

and only in cases in which common instances exist in both ontologies. These common instances

can either be the same individuals (with identical URIs) or individuals with different URIs that

have been declared identical through the use of a co-reference resolution procedure (though this

procedure can of course introduce errors that would negatively impact the alignment evaluation).

Furthermore, even if dual-typed instance data exists, there may be particular valid complex

correspondences for which few or no instances are available, which can compromise the evaluation

(even though some, metrics such as the log likelihood ratio and the modified version of the

Jaccard metric described in (Isaac et al., 2007), handle sparse data better than others). A solution

for handling sparse data is to synthetically generate additional instance data, as described in

(Schopman et al., 2012), but this has the potential of biasing the evaluation and no assurance of

covering particular complex correspondences better.

5 Evaluation without a reference alignment

Constructing reference alignments is a time-consuming task that requires the involvement of

domain experts. In the absence of time, an alternative evaluation strategy can be the manual

validation of sample alignments, as detailed in (Van Hage et al., 2007), although this still requires

significant involvement of domain experts. Alternative approaches consider the generation of

natural language questions to support end-users in the validation task (Abacha and Zweigenbaum,

2014) or validation of correspondences in a semi-automatic way (Serpeloni et al., 2011).

In the absence of both reference alignments and domain experts, there are two families of

approaches to ontology alignment evaluation: one that uses quality metrics to assess the logical

soundness of the alignment (Meilicke and Stuckenschmidt, 2008; Solimando et al., 2017), and

another that focuses on the suitability of the alignment for a specific task or application (Isaac

et al., 2008; Hollink et al., 2008; Solimando et al., 2014). In this section, we discuss how complex

alignments can be evaluated using these strategies.

5.1 Alignment quality metrics

The union of two ontologies through an alignment can lead to logical errors such as unsatisfiable

classes (i.e., classes than can only be interpreted as empty sets) even if both ontologies were

originally logically sound. In such cases, the merged ontology is said to be incoherent, and

by extension, so is the ontology alignment. Since, for many applications, incoherence would

cause problems, there are several approaches to measure ontology incoherence (Qi and Hunter,

2007). Derived from these, (Meilicke and Stuckenschmidt, 2008) proposed two measures to

assess an alignment’s quality based on its logical coherence: one based on counting unsatisfiable

classes; and another, named maximum cardinality measure (degree of incoherence), based on the

minimum number of correspondences that must be removed to obtain a coherent merged ontology.

Additionally, the authors proposed a variant of the latter measure that considers the confidence

scores of the correspondences and measures the minimum loss of total confidence required for

coherence, called the maximum trust measure. Interestingly, they reported that the maximum

cardinality measure can be used to compute a strict upper bound of precision (Meilicke and

Stuckenschmidt, 2008).

Also on the topic of logical soundness, Jiménez-Ruiz et al. (2011) proposed three principles

for ontology alignments: consistency, conservativity, and locality. The consistency principle states

that correspondences should not lead to unsatisfiable classes in the merged ontology. This is a bit

of a misnomer, as the principle pertains to ontology coherence (all classes are realizable) rather

than ontology consistency (there are no contradicting axioms). Compliance with this principle

can thus be assessed by using the metrics described above. The conservativity principle states

that correspondences should not introduce, in the merged ontology, new semantic relationships
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between any two entities that were originally from the same input ontology. Compliance with this

principle can be assessed by counting the number of violation to it, as proposed by Solimando

et al. (2017). Finally, the locality principle states that correspondences tend not to be semantically

isolated in the ontologies, which is to say, two semantically related concepts from one of the input

ontologies are more likely to be aligned to two concepts from the other input ontology that are

themselves semantically related, than to unrelated concepts. This principle is more a guideline

for identifying potential false correspondences than a basis for assessing alignment quality, which

is why no metric to assess its compliance has been proposed.

We must note that coherence and conservativity may sometimes be at odds with alignment

completeness, as ontologies have different modelling views of their domain, which have to be

reconciled when two ontologies are merged, possibly leading to new semantic relations between

entities of one or both of them, as well as to logical conflicts (Pesquita et al., 2013). Thus, it

may very well be that the complete and correct alignment between two ontologies is incoherent

and/or unconservative. Nevertheless, alignment coherence is critical for several applications, such

as ontology merging and query answering, and therefore is commonly used as an evaluation

criterion in the OAEI, in tracks such as Anatomy, Conference, Large Biomedical Ontologies,

Disease and Phenotype, and Ontology Alignment for Query Answering (OA4QA). Evaluation

modalities include binary assessment of coherence, the maximum cardinality measure, and the

number or fraction of unsatisfiable classes. The relevance of alignment conservativity is more

debatable, as it is not strictly required for any application, but it has also been used as an

evaluation criterion in the OAEI Conference and OA4QA tracks. Note also that neither coherence

nor conservativity evaluations are a substitute for an evaluation of alignment completeness and

correctness, and they have always been used in complement of the latter in the OAEI. In the

extreme case, an empty alignment is fully coherent and conservative, but utterly useless.

In complex alignments, assessing coherence is particularly desirable, as the very interest in

making a complex alignment is underpinned by a concern with semantic precision beyond what

simple alignments allow. However, assessing coherence requires reasoning and is computationally

challenging, particularly for large and/or semantically complex ontologies, and even more so if

the alignment itself is large and/or complex. Even more important, assessing coherence requires

that the merged ontology be expressible in OWL DL, which may not be the case in complex

alignments, even if the input ontologies are. Some complex correspondences are not expressible

in OWL at all, while others are expressible in OWL but not OWL DL.

Assessing conservativity of complex alignments makes less sense than doing so for simple

alignments, as complex alignments tend to contribute substantially to the semantics of both input

ontologies by design (e.g. by defining ontology restrictions) and thus it is not at all unexpected

that they lead to conservativity violations. That said, assessing conservativity violations in

complex alignments should be little harder than doing so for simple alignments, assuming the

correspondences can be encoded in OWL DL.

5.2 Task-based evaluation

The quality of an alignment can also be assessed regarding its suitability for a specific task

or application. Considering that ontology alignments are, in practice, constructed for a given

application or with a given task in mind, it would be useful to set up experiments that do

not stop at the delivery of the alignment but carry on to the application or task for which the

alignment was constructed. This is especially true when there is a clear measure of success for the

overall task or application, but even when there is not, it can be useful to share corresponding

aggregate measures associated with a task or application profile.

With respect to application-oriented evaluation, Isaac et al. (2008) proposed ontology

alignment evaluation methods for the specific scenarios of thesaurus merging and data translation.

They defined sets of tasks which need an alignment or part of it, then evaluated the alignment
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on how well it fulfilled these tasks in terms of quality (for each task how good is the answer) and

quantity (how many tasks were fulfilled by the alignment).

Regarding task-oriented evaluation, Euzenat and Shvaiko (2013) argued that different task

profiles can be established to explicitly compare matching systems for certain tasks, such as

ontology evolution or query answering, that have different constraints in terms of coverage and

run time. One such task-oriented evaluation approach was introduced in the OAEI in 2015 at

the OA4QA track2 (Solimando et al., 2014), which focused on the task of query answering. This

track used a synthetically populated version of the Conference dataset and a set of manually

constructed queries over these ABoxes. A given query, such as Q(x):=Author(x) expressed using

the vocabulary of the Cmt ontology, was executed over the merged ontology Cmt ∪ Ekaw ∪
A, where A is an alignment between Cmt and Ekaw. Precision and recall were calculated with

respect to model answer sets, i.e., for each ontology pair and query Q(x), and for each alignment

A computed by each matching system. An alternative approach for evaluating query answering

without using instances was proposed by David et al. (2018), where queries are compared without

instance data, by grounding the evaluation on query containment.

While task-based evaluation is equally valid for both simple and complex alignments, some

tasks tend to have higher expressiveness requirements, and thus to more often involve complex

alignments, such as query answering/rewriting and ontology merging (Thiéblin et al., 2018).

Query answering in particular has already been a subject of focus for complex alignments, with

(Makris et al., 2012) presenting a set of complex correspondences used for query rewriting3 for a

few pairs of ontologies. More recently, complex correspondences have been exploited for the task of

query rewriting for federating agronomic taxonomy knowledge on the LOD cloud (Thiéblin et al.,

2017). This (Taxon) dataset was also used in the Complex track of the OAEI 2018 campaign,

with the aim of assessing the performance of matching systems over large knowledge bases. The

evaluation was performed based on the quality of the generated alignments (in terms of precision)

and on the ability to rewrite SPARQL queries using these alignments. In particular, a manual

analysis of the number of queries satisfyingly rewritten based on the alignments was carried out.

The queries written for the source ontology were rewritten automatically when dealing with (1:1)

or (1:n) correspondences, using the system described by Thiéblin et al. (2016), and manually

when dealing with (m:n) correspondences.

Given the relevance of complex alignments for query answering, and the fact that this task

is one of the main applications of these alignments, evaluation approaches based on this task

would be highly relevant. One of the main challenges in implementing such approaches lies

in establishing a query rewriting scheme that encompasses the expressivity and cardinality

of complex correspondences. In the case of simple alignments, a naive approach for rewriting

SPARQL queries can be to simply replace the IRI of an entity of the initial query by the IRI

of the corresponding entity in the alignment, as described in David et al. (2011). For complex

alignments, such a naive approach is obviously not possible, as the semantics of the alignment

itself has to be taken under consideration. Euzenat et al. (2008) proposed an approach for writing

specific SPARQL construct queries, but most query rewriting systems still rely on simple or (1:n)

complex correspondence and fail in covering highly expressive (m:n) complex correspondences.

6 Discussion

The nature of complex ontology alignments presents unique evaluation challenges that were

not considered when existing evaluation techniques were developed. This section outlines those

challenges and analyzes the areas in which current approaches are lacking.

2http://www.cs.ox.ac.uk/isg/projects/Optique/oaei/oa4qa/index.html
3http://www.music.tuc.gr/projects/sw/sparql-rw/
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6.1 Challenges

Regarding evaluation using reference alignments, challenges exist at each stage of the evaluation

process:

Anchor Selection: Given the less bounded nature of complex matching, it is to be expected

that systems will produce a large number of correspondences.

Challenge 1: Selecting which candidates will be compared to which reference

correspondences in order to avoid the necessity of a full pairwise comparison of all

candidates in the comparison step

Correspondence Comparison: Complex correspondences can consist of entities of arbitrary

complexity and be expressed in a multitude of semantically equivalent or nearly-equivalent

ways.

Challenge 2: Determining the relation between a candidate correspondence and a

reference correspondence, which requires comparing all of the singular entities and the

expressions in which they are listed for both correspondences

Challenge 3: Handling correspondence decomposition, which involves comparing

sets of correspondences to a single correspondence, since the combination of several

correspondences (simple or complex) can be equivalent or related to a single complex

correspondence

Challenge 4: Comparing correspondences whose relation differs (e.g. a subsumption

to an equivalence)

Scoring: Complex correspondences contain more axes than simple correspondences, because

e and e′ are not single entities but rather (potentially nested) combinations of entities,

constructors, and transformation functions. This necessitates more nuanced scoring metrics,

which can be used to determine how close a correspondence is to a reference correspondence.

This allows for measuring the effort required of a human validator or by matching

approaches creators to understand the limitations of their approaches and thus drive

development.

Challenge 5: Accurately reflecting the quality of a correspondence, especially

considering that in complex matching, a correspondence is still useful even if only

partially correct.

Aggregation: Existing aggregation approaches for alignment evaluation with a reference

alignment were designed with simple alignments in mind. They are tightly coupled to

particular correspondence comparison and scoring methods and tend to take an all-or-

nothing, or at best all, half, or nothing, approach.

Challenge 6: Factoring correspondences that are partially correct into the scoring

process

Challenge 7: Considering a set of candidate correspondences in conjunction as related

to a single reference correspondence (and vice-versa)

Challenge 8: Handling the occurrence of multiple correct candidate correspondences

that are implied by a single reference correspondence (as is the case in correspondence

3 from the reference alignment and 3 and 4 from the first alignment system)

Evaluation when no reference alignment is available presents an orthogonal set of challenges.

Task-based evaluations require a well defined task, for which a quality metric is definable. The

quality of the alignment is measured by proxy through the quality of the task results, which

results in a narrow scope for the evaluation. Furthermore, for tasks where the output needs to

be manually evaluated (e.g., query rewriting) the manual effort required presents an additional

challenge.
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Challenge 9: Developing generalizable quality metrics for task-based complex align-

ment evaluation

Challenge 10: Automating the query rewriting process based on a set of complex

correspondences

In addition to being able to handle the aforementioned challenges, evaluation metrics for

complex alignments should also be fully automated and independent of manual input, even if the

alignment is intended to be manually validated post-hoc. This is a crucial feature to further

promote the development of complex matching approaches, by shortening the time between

development cycles. Consequently, techniques for the evaluation of complex alignments need to

be able to handle the computational complexity the challenges pose, both at the correspondence

level and at the alignment level.

6.2 Gap analysis

We now turn our attention to assessing the degree to which existing alignment evaluation

approaches address the challenges above. This analysis begins with approaches focused on cases

in which a reference alignment is available (i.e. those relevant to challenges 1 through 8).

Syntactic approaches are unsuited to address challenges 3 and 4, since they do not employ

reasoning and consider correspondences that are logically equivalent or can be derived as

incorrect. They are also unable to address challenges 5, 6 and 7, given that they do not

consider closely related correspondences. By virtue of their simplicity, they struggle less with

challenges 1, 2 and 8, which are related to the computational complexity of the approach.

Rule-based semantic approaches provide strategies that can partially address chal-

lenges 5 and 6, since they are able to account for closely related correspondences involving

direct super/subclasses. However, they are unable to handle the full gamut of expressions

required by complex matching. Furthermore they do not address the remaining challenges.

Edit-distance metrics, which assess the number of modifications that must be made to a

candidate correspondence in order to arrive at reference correspondence, can be considered

a type of rule-based semantic approach in the context of complex alignment evaluation.

Examples of edit-distance metrics for strings include Levenstein and Smith-Waterman.

These metrics are potentially able to handle challenges 4, 5 and 6, while not specifically

addressing the remaining challenges. However, we are not aware of any existing edit-distance

metrics for any of the common complex alignment representation languages discussed in

Section 3.

Reasoning-based semantic approaches are better suited to answer challenges 2, 3 and

7, since they can cover the semantic complexity of complex expressions, and also handle

correspondence decomposition. However, this is restricted to the cases where the merged

ontologies are in OWL-DL. Furthermore, they are unable to handle challenges 5 and 6

since they only cover correspondences that can be logically derived, they consider closely

related correspondences as incorrect. They also do not offer any specific features to address

challenges 1 and 8.

Instance-based approaches circumvent many of the outlined challenges, by simplifying

correspondence evaluation to a measure of the overlap between sets of instances. However

they are applicable to class correspondences and transformations, but it is not straightfor-

ward to apply them to property correspondences. Furthermore, they require that all classes

in the alignment be populated with instances.

With respect to evaluation approaches that do not require a reference alignment, the existing

work primarily consists of manually intensive evaluation strategies that were uniquely developed
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for particular cases. There is significant room for future work on the challenges relevant to these

metrics (i.e. challenges 9 and 10).

6.3 Feasibility analysis

The task of evaluating complex correspondences is inherently expensive computationally, due to

the syntactical and semantic complexity of these correspondences.

From a syntactic perspective, there is no theoretical limit to the complexity of the expressions

that can be constructed through nesting. This is not a challenge for the use of the traditional

syntactic evaluation metric, which can still be implemented with O(n) time complexity. It is,

however, a substantial challenge for the implementation of more sophisticated and promising

approaches, such as rule-based and particularly edit-distance metrics, which have to cope with a

potentially endless search space of possible combinations of constructions and transformations.

This means that, in all likelihood, such evaluation approaches would have to adopt non-naive

techniques to reduce the search space, and contemplate only the more plausible combinations of

constructions in order to ensure efficiency.

From a semantic perspective, the more expressive complex correspondences go beyond OWL

DL, and thus may not be decidable, while transformations cannot be expressed in OWL at all.

This means that semantic approaches relying on existing OWL reasoners would only be able

to evaluate correspondences with constructions supported by those reasoners, which would limit

their applicability.

By contrast, instance-based approaches are largely unaffected by the complexity of the

correspondences, and could be the most realistic way to address the complex alignment evaluation

problem, by shifting from the comparison of correspondences into the comparison of sets of

instances. One approach for this would be to determine, for each correspondence ci in the

evaluated alignment, the relation between the sets of instances Is and It, belonging to the

source and target members of the correspondence respectively. Each correspondence could then

be classified as equivalent, subsumed, overlapping, or disjoint, given the relation between Is and It,

or empty if Is = It = ∅ (i.e., if both members are either unsatisfiable or non-populated entities).

Having a reference alignment, one would know what are the sets of expected instances to be

compared. Different precision scores could then be computed for each type of correspondence

member relation: the equivalent precision would measure the percentage of correspondences whose

members are exactly populated with the same instances, and likewise, the subsumed, overlapping

and not disjoint precision would measure the percentage of correspondences whose members

subsume one another, overlap, or are not disjoint, respectively.

Such a strategy could rely on expressing complex correspondences as SPARQL queries,

which would cover also transformation functions. As we discussed previously, it is limited in

coverage, since it can be applied to the evaluation of class (expression) correspondences or

transformations, but it is not straightforward to apply to the evaluation of property (expression)

correspondences. Furthermore, it requires the knowledge bases to be consistently populated (i.e.,

complete population of all entities the complex correspondences are supposed to cover). However,

the cost of creating such a knowledge base (e.g. with artificially populated data) is smaller than

the cost of creating reference alignments or applying evaluation strategies such as query rewriting.

7 Conclusions and Future Work

In this paper we have defined complex ontology alignments and shown that the few systems that

have attempted to generate such alignments have been evaluated using methods that are difficult

to generalize and/or labor intensive. A survey of existing evaluation approaches, which were

developed with simple alignments in mind, has shown that they are insufficient in several ways.

In particular, the most common evaluation approach, based on exact syntactic match, lacks the

nuance necessary to distinguish between completely unhelpful correspondence suggestions and
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those that are “almost correct.” Other existing evaluation techniques are not scalable to the

complex case, can only be used under certain conditions (e.g. when dually-annotated instance

data is present or when the alignment is expressible in OWL DL), or have other drawbacks. We

have enumerated what we view as the most pressing gaps between current techniques and what

are needed for complex alignment evaluation. In the remainder of this section, we propose future

work that can potentially bridge these gaps.

Evaluating complex ontology alignments is too broad a challenge to tackle with a single

approach, as there are multiple aspects to take into account, and different tasks will likely merit

different evaluation paradigms. Considering that the two main applications of complex alignments

are ontology/linked-data integration, and query answering/rewriting, it stands to reason to focus

our efforts in developing evaluation approaches with these applications in mind.

With respect to ontology/linked-data integration, it is unlikely that the state of the art in

ontology alignment ever reaches a point where human validation is unnecessary. This is true even

for simple alignments, but particularly so for complex alignments, given the inherent difficulty in

generating them automatically with reasonable precision or recall. Under this premise, we believe

that the most adequate approach to evaluate complex alignments in the context of this application

would be an edit-distance approach that reflected the effort involved in human validation, in

the same spirit as the effort similarity approach we reviewed in Section 4.2.2. Therefore, our

future work will concentrate on developing an analogous edit-distance approach that encompasses

all the requirements and nuances of complex alignment evaluation. Concretely, the approach

must explicitly contemplate all complex expressions in use and define costs for inter-converting

them, and must adequately handle cases of correspondence decomposition, where a reference

correspondence should be compared with two or more system correspondences that cover it

partially (or vice versa). Greater granularity with respect to the edit-costs between semantically

related classes would also be desirable. Last, but not least, the approach should be scalable,

and avoid the need to do all-vs-all correspondence comparisons. Given these constraints, we

believe that a deterministic rule-based edit-distance approach that covers all the key complex

correspondences constructions explicitly, in a way that reflects the effort required to correct

them, would be the best candidate.

With respect to query answering/rewriting, we believe that there are two major hurdles to be

tackled: developing an automated converter for transforming any complex alignment into a query

rewriting scheme; and developing a query generating algorithm that can automatically generate

queries adequate in coverage and scope to the complex alignment to evaluate. The primary focus

of our future work will be the first hurdle, as only by overcoming it can we use query-based

approaches to fully evaluate complex alignments automatically. Overcoming the second hurdle

will be essential to enable the widespread use of query-based evaluation, and will also contribute

to make query-based evaluation efforts more comprehensive and comparable, as otherwise queries

have to be manually defined for each test case.

We will also explore instance-based evaluation approaches, such as the one delineated in the

previous section. This approach can complement or even replace the edit-distance approach in

a linked-data integration scenario, and can be a computationally efficient and labor-friendly

alternative to query answering.
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